
Midterm 2 Study Guide Handout 25
CSCI 334: Spring 2025

The second midterm is cumulative, drawing from all topics covered throughout the semester. More emphasis
will be placed on topics from the second half of the semester.

First half Second half
What is a Programming Language? Gumptionology 101
An Introduction to F# Beating the Averages
More F# Parsing
F#: The Cool Stuff Evaluation
Higher Order Functions Implementing Variables
Syntax Implementing Scope
Lambda Calculus, Part 1 and Part 2 Type Inference (handout)
Function Graphs (handout)

Problems

Q1. Terminology
Review the semester’s required readings, specifically looking for definitions of new terms. Write down
the term and a brief definition.
Hint: Look for italicized words. Italics are sometimes used for emphasis, but it is also often used to
draw your attention to new technical terms. For example, in “More F#”, one of the first italicized
phrases is source code. So write something like:
Source code: a textual form of code written by a programmer which is not directly interpretable by a
machine.
Find as many technical terms as you can and define them.

Q2. F# Coding
Write a function:

isPalindrome: string -> bool

that returns true if the given string is a palindrome, otherwise false. Recall that a palindrome is a
string that reads the same forwards and backwards.

isPalindrome "mom" = true
isPalindrome "dad" = true
isPalindrome "amanaplanacanalpanama" = true

Remember that you can use array indexing to access a single char inside a string.
> "mom"[1];;
val it: char = 'o'
Solve this problem using recursion. Your solution may not use a built-in function like List.rev or
Array.rev.

Q3. Lambda Calculus Reductions
Reduce the following expressions. If the expression does not have a normal form, explain why.

• (λf.fz)(λx.x)
• (λx.λy.x(yy))λz.z
• (λx.λy.xxy)(λx.λy.xxy)
• (λf.λx.fx)(λy.z)((λx.xx)(λx.xx))

Q4. (10 points) . Partial and Total Functions
Find the function graphs for the following functions and state whether the function is total or partial.
Use the domain Z as input. Assume that an int can represent any z ∈ Z.

(a) let rec fibonacci n =
match n with
| 0 -> 0
| 1 -> 1
| _ -> fibonacci (n - 1) + fibonacci (n - 2)

(b) let rec gcd a b =
if b = 0 then
a

else
gcd b (a % b)

(c) let abs x =
if x < 0 then
-x

else
x

Q5. (10 points) . Parsing and Evaluation
The Ephspresso language is a sequence of operations on a tape having the following grammar.

<expr> ::= <op>*
<op> ::= + | - | < | > | p

A tape is an array of length 10, with all elements initially set to zero. A tape head is the current index
of the tape, also initially zero. The + and - operations increment and decrement the number stored
under the tape head, respectively. The < and > operations move the tape head left (decrement the
index) or right (increment the index), respectively. The p operation prints a character representation
of the number written on the tape under the tape head according to the following scheme:

0→ a
1→ b
2→ c
. . .

25→ z

Moving the tape head off the tape causes the machine to terminate abnormally (i.e., with an error).
Otherwise, the machine terminates normally when the program finishes executing.
Implement Ephspresso in F#. You should be able to write a program that prints ephs to the console.

Q6. Type Inference
Infer the type of the following function.

let f (x: int) y = string (x + 1) + y

Assume the functions shown below have the following types.

function type
+ int -> int -> int
+ string -> string -> string

string int -> string

Q7. Global Variables
Suppose you have the following program, in a language with globally-scoped variables, where := stands
for assignment.

x := 2
y := x := x + 1
y := y + x
print y + x

This program parses into the following AST.

seq

:=

x 2

:=

y :=

x +

x 1

:=

y +

y x

print

+

y x

Determine what the final print statement prints by simulating evaluation with a global variable
environment. The initial environment is empty, written { }. Assume that environments are always
passed from the left hand side of a seq to the right hand side and that assignment returns a value. To
get you started, here is the same tree with just the leftmost assignment evaluated. The environment
is shown in red and return values are shown in blue.

seq

{x ← 2} 2 :=

x { } 2 2

:=

y :=

x +

x 1

:=

y +

y x

print

+

y x

