
Lab 11
Due Wednesday, May 14 by 11:59pm

Handout 24
CSCI 334: Spring 2025

In this lab, you will complete your final project. To help you finish, I provide a final project checklist below.
Be sure to pay attention to the minimum required amounts for writing where given (e.g., 2+ paragraphs).

Two of the items on the checklist are new to you:

• writing a Semantics section, and

• implementing unit tests.

Both new items are described in detail below. You should be familiar with the other items on the checklist.

Turn-In Instructions
For this lab, you will continue to use your project repository. Be sure to follow the instructions for committing
your work to the appropriate branch.

Turn in your work using your assigned git repository. The name of your repository will have the form
https://aslan.barowy.net/cs334-s25/cs334-project-<USERNAME1>-<USERNAME2>.git For example, if
your CS username is abc1 and your partner’s is def2, the repository would be https://aslan.barowy.net/
cs334-s25/cs334-project-abc1-def2.git

Pair Programming Assignment
This is a pair programming lab. As with previous partner labs, you may work with a partner. However, for
a pair programming assignment like this one, you may collaborate to produce a single solution. You do not
need to submit a collaborators.txt file for this lab.

This assignment is due on Wednesday, May 14 by 11:59pm.

Reading

1. (Required) Read “Unit Testing in F#” from the course packet.

2. (Required) Read “Appendix B: Branching in git” from the course packet.

https://aslan.barowy.net/cs334-s25/cs334-project-<USERNAME1>-<USERNAME2>.git
https://aslan.barowy.net/cs334-s25/cs334-project-abc1-def2.git
https://aslan.barowy.net/cs334-s25/cs334-project-abc1-def2.git

Problems

Q1. Set the Project Branch
Your work must be committed to a branch called final.

To create and switch to a final branch:

(a) Run git checkout -b final, which will create a new branch called final.
(b) Make your changes, then git add and git commit as appropriate to save your changes.
(c) To push the new branch to aslan for the first time, run git push -u origin final. We need

to push differently than usual because the final branch you just created does not exist on the
server. Subsequent calls to git push can be made as usual.

(d) Go to your repository and verify that your new final branch appears in the web interface.

After you have pushed the final branch to the server, if your partner wants to check out the same
branch, they should first git pull and then run git checkout final.

Merge conflicts. Be aware that when any two developers work on the same branch, it is always
possible that git will not be able to automatically “merge” the two sets of changes. This common
occurrence is called a “merge conflict.” When you see this, keep in mind that it is a safety feature
that prevents you from accidentally overwriting another developer’s changes. It is only frustrating
when you don’t know that conflicts are normal. You should expect merge conflicts to happen, and in a
large enough project, they will happen with some frequency. The required reading walks you through
handling them.

Q2. Semantics

Your final project specification should explain the semantics of the constructs in your program. A
language semantics explains how syntax is converted into an AST node (or nodes) and what that AST
fragment means. A good choice at this stage is to describe one of your language’s primitives (e.g.,
data) and one of your language’s combining forms (e.g., an operation). For example, you might build
the following table.

Syntax Abstract Syntax Prec./Assoc. Meaning
<n> Number of int n/a n is a primitive. We represent integers

using the 32-bit F# integer data type
(Int32).

<expr> + <expr> PlusOp of Expr * Expr 1/left PlusOp evaluates two expressions, e1 and
e2, adding their results, finally yielding
an integer. Both e1 and e1 must each
evaluate to int, otherwise the interpreter
aborts the computation and alerts the
user of the error.

Your semantics does not need to be formal, and it does not need to be in a table, but it should discuss
the items shown the table above. You are required to document all of the parts of your language.
Your semantics should be added to the specification document that appears in your “docs” folder. You
must use LATEX for your specification.

Q3. Tests
This submission is required to have at least five tests.

(a) At least one test should be an “end-to-end” test that ensures that for a given program in your
language you get a given output. An end-to-end test should invoke both your parser and your
evaluator.

(b) At least one test should test one of your parser functions. Any parser is fine.
(c) At least one more should test one of your evaluation rules. Any evaluation rule is fine.
(d) For the remaining tests, you may choose any other component that you think would be helpful

to you.

Setup. To implement tests, you will need to create a solution for your project. Creating a solution
will require you to rearrange some of your files inside your code folder. Be sure to do this reorganization,
as it is an important part of the final checklist. See the unit testing reading in the course packet, and
the “Running tests” subsection below, for guidelines.

Rationale. From personal experience developing languages, tests are tremendous time-savers. It
is always frustrating to discover that a newly-added feature breaks other functionality. Making that
discovery well after you’ve added the feature—that’s even worse. Having a good test suite will help
you find problems early, and it will save you a lot of sweat and tears. If you want to have more than
five tests, please go ahead and implement them.

I strongly recommend testing your parsers, which are pure functions and are therefore relatively easy
to test. To test parsers, you will first need to prepare your input string, then pass it to one of your
parser functions, then check for Success or Failure in your test.

Running tests. Your should be able to run your tests by running $ dotnet test from your code
directory. Since tests run in the folder that your sln file resides, you will need to reorganize your
project. Your solution should be in the code folder, your language implementation should be in the
subfolder code/lang, and your tests should be in a folder called code/tests.

Q4. Final Project Checklist
(a) You have created a 5-10 minute video presentation, and included this video with

your implementation. Note: large video files cannot be added to git; please
include a link to Google Drive/YouTube/etc. instead.

(b) Your project has a (silly) name.

(c) Your project has a specification.

(d) Your parser is in a file called Parser.fs.

(e) Your AST is in a file called AST.fs.

(f) Your interpreter / evaluator is in a file called Evaluator.fs.

(g) Your main function is in a file called Program.fs.

(h) Your project compiles (this is very important).

(i) Your project runs (this is very important).

(j) Your language “does something.” It prints out a computed result, it generates a
file, etc.

(k) You are sure to tell the user (me) what the expected result should be!

(l) Your implementation has a test suite and it runs.

(m) There is at least one test written for the parser.

(n) There is at least one test written for the interpreter.

(o) Your project can be run at the project level by calling dotnet run <input>
or at the solution level by calling dotnet run --project <whatever.fsproj>
<input>.

(p) Your specification document has a title.

(q) Your name and your partner’s name is written at the top of the spec.

(r) Your specification has an Introduction section consisting of 2+ paragraphs.

(s) Your specification has a Design Principles section consisting of 1+ paragraphs.

(t) Your specification has an Examples section consisting of 3+ example programs.

(u) Each of your examples is provided (and ideally, each example is in a separate file)
so that an interested third party (me or one of your classmates) can run them.
Instructions to run the examples is provided.

(v) Your specification has a Language Concepts section consisting of 1+ para-
graphs.

(w) Your specification has a Formal Syntax section consisting of as much BNF
is needed to completely describe your language’s syntax.

(x) Your specification has a Semantics section consisting of one short description
per language element (where an element is normally an AST node), completely
describing your language.

(y) Your specification provides enough detail that an interested third-party (like me
or one of your classmates) can write a new program in your language.

(z) If your parser is “generous” and accepts programs that actually do not make
sense, make sure that the program detects these cases and shuts down cleanly
(i.e., the user does not see an exception).

(α) You committed your specification, in a folder called docs, to a branch called
final.

(β) You committed your implementation, in a folder called code, to a branch called
final.

(γ) Your specification has a Remaining Work section that describes further en-
hancements, if any, you would like to see. If your prior draft had features that
you did not get to by the final submission, briefly explain why you were not able
to implement them.

(δ) If you would like me to transfer ownership of your repository to you, please
provide the name of a Github user or organization that will take over ownership.
Put this username in a file called TRANSFER.txt.

(ϵ) If you intend to make your repository public, put a LICENSE.txt copyright state-
ment in your repository, at the root level, so that people know under what con-
ditions you plan to let them use your code. For example, provide a copy of the
GNU Public License, or BSD License, etc.

(ζ) Is it OK for me to share your project with future CSCI 334 students? Students
often tell me that it is helpful to see what others did. If so, please add a file called
SHARING.txt to your repository. If you have any conditions on sharing, please
put your notes in the file, otherwise it’s OK to leave the file blank. If you do not
want to share, do not create the file.

