
Lab 10
Due Wednesday, April 30 by 11:59pm

Handout 22
CSCI 334: Spring 2025

Turn-In Instructions
For this lab, you will checkout a project repository that you will continue to use for the rest of the semester.
Be sure to follow the instructions for committing your work to the appropriate branch.

Turn in your work using your assigned git repository. The name of your repository will have the form
https://aslan.barowy.net/cs334-s25/cs334-project-<USERNAME1>-<USERNAME2>.git For example, if
your CS username is abc1 and your partner’s is def2, the repository would be https://aslan.barowy.net/
cs334-s25/cs334-project-abc1-def2.git

Pair Programming Assignment
This is a pair programming lab. As with previous partner labs, you may work with a partner. However, for
a pair programming assignment like this one, you may collaborate to produce a single solution. You do not
need to submit a collaborators.txt file for this lab.

This assignment is due on Wednesday, April 30 by 11:59pm.

Reading

1. (Required) Read “Implementing Variables” from the course packet.

2. (Required) Read “Implementing Scope” from the course packet.

https://aslan.barowy.net/cs334-s25/cs334-project-<USERNAME1>-<USERNAME2>.git
https://aslan.barowy.net/cs334-s25/cs334-project-abc1-def2.git
https://aslan.barowy.net/cs334-s25/cs334-project-abc1-def2.git

Problems

Q1. (15 points) . Set the Project Branch
Your work must be committed to a branch called prototype.

To create and switch to a prototype branch:

(a) Run git checkout -b prototype, which will create a new branch called prototype.
(b) Make your changes, then git add and git commit as appropriate to save your changes.
(c) To push the new branch to aslan for the first time, run git push -u origin prototype. We

need to push differently than usual because the prototype branch you just created does not exist
on the server. Subsequent calls to git push can be made as usual.

(d) Go to your repository and verify that your new prototype branch appears in the web interface.

After you have pushed the prototype branch to the server, if your partner wants to check out the
same branch, they should first git pull and then run git checkout prototype.

Q2. (85 points) . Minimal Project Prototype
For this question, you will build a minimally working version of your language. You will also update
your project specification document as you design syntax to support your minimally working version.
Put your code in the code folder and update your specification in the docs folder.
A minimally working interpreter has the following components:

(a) A parser. Put your parser in a library file called Parser.fs. The namespace for the parser should
also be called Parser.

(b) An abstract syntax tree. Put your AST in a library file called AST.fs. The namespace for the
interpreter should also be called AST.

(c) An interpreter / evaluator. Put your interpreter in a library file called Evaluator.fs. The names-
pace for the interpreter should also be called Evaluator.

(d) A driver program. The driver code, Program.fs, should contain a main function that takes input
from the user, parses, and interprets it using the appropriate library calls, and displays the result.
For example, if your project is an infix scientific calculator (an expression-oriented language), it
might accept input and return a result on the command line as follows:

$ dotnet run "1 + 2"
3

Alternatively, your language might read in a text file containing same program, e.g.,

$ dotnet run myfile.calc
3

Either way, running your language without any input should produce a helpful “usage” message
that explains how to use your programming language.

$ dotnet run
Usage:

dotnet run <file.calc>

Calculang will frobulate your foobars.

Think carefully about what constitutes a “primitive value” in your language. Primitive values and
operations on primitive values are good candidates for inclusion in a minimally working interpreter
because they are generally the easiest forms of data and “combining forms” to implement.
Another form of combining form, often used in statement-oriented languages like C, is referred to as the
“sequence operator”, and it’s what is meant by the semicolon in the the following C program fragment:

1;
2;

which produces the following AST:

seq

1 seq

2 nop

where nop is an AST node that does “no operation.” In any case, choose one combining form that
makes sense in your langauge.

Minimally Working Interpreter

The following constitutes a “minimally working interpreter”:

(a) Your AST can represent at least one kind of data.
(b) Your AST can represent at least one combining form.
(c) Your parser can recognize a program consisting of your one kind of data and your one combining

form and it produces the appropriate AST.
(d) Your evaluator can evaluate any AST produced by your parser. In other words, it may recursively

evaluate subexpressions when appropriate. Note that it is important that your minimally working
interpreter do something, whether that be to compute a value, or write to a file, etc. If this part
is confusing or unclear, please come speak with me.

(e) The entire language can be invoked on the command line as described above.

The goal here is not to implement your entire language. Instead, find a tiny seed of your language and
plant it. By the end of the semester, you will grow that tiny seed into the language you envision.
Do as much as you need to convince yourself that you’re on the right track. If you need to cut corners
at this point, that’s OK. The most important thing is that your language has all three parts (parser,
AST, evaluator) in some form, and that those parts work, even though they may not be fully functional.

Minimal Formal Grammar

Finally, update the Syntax section of your specification with a formal definition of your minimal
grammar. For example, if our minimal working version were a scientific calculator that only supports
addition, our first pass on the grammar might be:

<expr> ::= <number>␣<op>␣<expr>
| <number>

<number> ::= <d><number>
| <d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<op> ::= +

Where ␣ denotes a space character. Note that we did not write the following similar grammar.

<expr> ::= <expr>␣<op>␣<expr>
| <number>

<number> ::= <d><number>
| <d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<op> ::= +

The reason is that this latter grammar is what we call left recursive. In particular, the production
<expr>␣<op>␣<expr> is problematic for mechanical reasons: when we convert our BNF into a program
(a parser), it is possible to construct a program that recursively expands the left <expr> infinitely
without ever consuming any input. When using recursive descent parsers such a parser combinators,
we must be careful to ensure that recursive parsers always consume input, otherwise, we run the very
real danger of our parser getting stuck in an infinite loop. If your grammar is left recursive, redesign
it so that it is no longer left-recursive.

Since your grammar only has a single combining form, precedence will not yet be an issue. However, if
you can include more than one such combining form, you will need to think about the associativity of
your combining form. Is it left or right associative? For example, addition is typically left associative,
therefore the following expression

1 + 2 + 3

should produce the following AST

plus

plus

1 2

3

How to Organize

Your submission should organize your files into two different directories. Your language implementation
should be placed in a directory called code, and as usual, it must be written in F#. Your draft
specification must be placed in a directory called docs. Since we are updating our specification from
the last project checkpoint, you may start by copying your old LATEX files into the docs directory.
After you git push your project, you should immediately create a new branch called final so that
future project work goes into a different branch. Just follow the branching instructions above again,
substituting final where you see prototype.

