
Lab 9
Due Wednesday, April 23 by 11:59pm

Handout 21
CSCI 334: Spring 2025

Coding Guidelines
Each question in this assignment should go into the appropriate project directory. For example, the solution
to question 1 should be in a folder called “q1”. When a solution is a program, one should be able to cd into
the question directory and then run your program by typing the command “dotnet run”, with additional
arguments depending on the question.

Every program should be split into two pieces: a “Program.fs” file that contains the main method and
associated program-startup helpers (if needed), and another “Library.fs” file that contains the function(s)
of interest in the question. Library code should be contained within a module named “CS334”. Be sure
to provide usage output (defined in main) for all programs that require arguments. For full credit, your
program should both build and run correctly.

Turn-In Instructions

Turn in your work using your assigned git repository. The name of your repository will have the form https:
//aslan.barowy.net/cs334-s25/cs334-lab09-<USERNAME>.git. For example, if your CS username is
abc1, the repository would be https://aslan.barowy.net/cs334-s25/cs334-lab09-abc1.git.

You should have received an invite to commit to the repository via email. If you did not receive an email,
please contact me right away!

Group Programming Assignment
This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit your
solution. No code copying is allowed. Tell me who your partner is by committing a collaborators.txt file
to your repository. Be sure to commit this file whether you worked with a partner or not. If you
worked by yourself, collaborators.txt should contain something like “I worked by myself.” (5 points)

This assignment is due on Wednesday, April 23 by 11:59pm.

Reading

1. (Required) “Evaluation”

2. (Recommended) “Appendix A: Original SML Specification”

3. (Recommended) “A Logo Primer”

https://aslan.barowy.net/cs334-s25/cs334-lab09-<USERNAME>.git
https://aslan.barowy.net/cs334-s25/cs334-lab09-<USERNAME>.git
https://aslan.barowy.net/cs334-s25/cs334-lab09-abc1.git
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html

Problems

Q1. (45 points) . Evaluation
In this problem, you will build a complete programming language that calculates the derivative of a
polynomial expression. In Backus-Naur form, a polynomial is defined as follows.

<polynomal> ::= <term>␣+␣<polynomial>
| <term>

<term> ::= <coeff>x^<exp>
<coeff> ::= -number | number

<exp> ::= -number | number
<number> ::= <digit>+
<digit> ::= 0 | ... | 9

where ␣ is a mandatory space character. For example, both 3x^4 + 2x^2 and 1x^2 are valid poly-
nomials in this language, but x^5 and 3y are not. A term must always include a coefficient and an
exponent, and the variable must always be x. Observe that polynomial expressions are strictly defined
by term addition. To represent subtraction of terms, like x2 − 1, we must rewrite the expression in the
form above with a negative coefficient, like 1x^2 + -1x^0.
Your interpreter should use only the following AST types.

type Term = { coeff: int; exp: int }
type Polynomial = Term list

Above, we are using an F# feature called a record in our definition of Term. A record works much like
a tuple, except that the name associated with a record’s element is meaningful, unlike with tuples. For
example, we can instantiate a Term like so,

let t = { coeff = 3; exp = 5 }

and we can access one of the Term’s elements like so

printfn "%d" t.coeff

Observe that our Term type does not explicitly represent the variable in a term. You should assume
that all valid Terms are always implicitly defined in terms of x. Consequently, a term that consists
only of a constant must include the exponent 0.

(a) Start by defining a function with the following signature

evalTerm: Term -> Term

that computes the derivative of a single term using the power rule. Let f(x) = cxe where c ∈ Z
and e ∈ Z. The power rule states that the derivative of f is

f ′(x) = cexe−1

For example, if evalTerm is given the Term with the value { coeff = 4; exp = 5 }, evalTerm
returns { coeff = 20; exp = 4 }. Note that the above definition implies that when e = 0, the
derivative is 0. In this case, evalTerm should return { coeff = 0; exp = 1 }, which we will
use as our standard representation of the constant zero.

(b) Next, define the function

evalPoly: Polynomial -> Polynomial

which returns the derivative of an entire polynomial expression by calling evalTerm as appropriate.
The polynomial returned by evalPoly should also order its terms from the highest to the lowest
degree. To sort, use the List.sortByDescending function.

(c) Define a parser function

parse : string -> Polynomial option

where the function returns Some AST after a successful parse and None when the input is invalid.
(d) Define a pretty-print function

prettyPrint: Polynomial -> string

that prints out the string representation of a polynomial. This function should have the property
that for any valid polynomial expression string s,

prettyPrint (parse s) = s

when ignoring the inconvenient fact that parse returns a Polynomial option instead of a
Polynomial. In other words, in principle, we can compute a repeated derivative by pasting
the output of our interpreter back into the interpreter’s input.

(e) Finally, define a main method that reads a polynomial expression from the command line, parses it,
and then prints the pretty-printed derivative. As usual, your program should not throw exceptions
when the user supplies bad input. You may use the following usage function if you wish.

let usage() =
printfn "Usage: dotnet run <polynomial>"
printfn "\twhere <polynomial> has the form <c_1>x^<e_1> + ... + <c_n>x^<e_n>,"
printfn "\tfor example, \"3x^5 + -5x^2\""
exit 1

When you run your interpreter with the input below, you should see output like the following:

$ dotnet run "2x^5 + -1x^1"
10x^4 + -1x^0

The project directory for this question should be called “q1”. You should be able to run your program
on the command line by typing, for example, “dotnet run "3x^5 + -5x^2"”.

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#sortByDescending

Q2. (50 points) . Project Description
For this question, you will start describing your final project: a programming language of your own
design. You must submit your specification as a LATEX document.
Many programming language specifications begin as informal documents, and this is the template that
we will follow in this class. With each stage of your project, you will revisit this document, making
it clearer and more precise as you work. It will be a “living document.” By the end of the semester,
your final specification will include a formal syntax and an informal, but precise, description of your
language’s semantics. It should clearly document your software artifact, which will be an interpreter
for the language. For now, we will start informally, and you should feel free to borrow text from your
brainstorm.

Goals

To help you see where we are going, here are the goals of the final project. Your language need not be
(and I discourage you from trying to build) a Turing-complete programming language. Instead, focus
on solving a single kind of problem. In other words, design a domain-specific programming language.
By the end of the semester, your project must achieve all of the following objectives:

(a) It should have a grammar capable of expressing either an infinite or practically-infinite number
of possible programs.

(b) It should have a parser that recognizes a syntatically-correct program, outputting the correspond-
ing abstract syntax tree.

(c) It should have an evaluator capable of interpreting any valid AST.
(d) The language should do some computational work.

If it is convenient to solve your problem by reducing to or extending a lambda calculus interpreter, you
may propose such a solution. However, in most cases, it will likely be easier to design a purpose-built
interpreter.

Structure of the Specification

Version 1.0 of your specification should explicitly include the following sections. The purpose of this
document is to convince yourself that your language implementation is possible. If you aren’t convinced,
add more detail to convince yourself!

(a) Introduction
2+ paragraphs. What problem does your language solve? What makes you think that this
problem should have its own programming language?

(b) Design Principles
1+ paragraphs. Languages can solve problems in many ways. What are the aesthetic or
technical ideas that guide its design?

(c) Examples
3+ examples. Keeping in mind that your syntax is still informal, sketch out 3 or more sample
programs in your language.

(d) Language Concepts
1+ paragraphs. What are the core concepts a user needs to understand in order to write
programs? Think in terms of both “primitives” and “combining forms.” What are the key ideas
and how are they combined?

(e) Syntax
As much as is needed. Sketch out the syntax of the language. For now, this can be an English
description of the key syntactical elements and how they fit together. Examples are fine. We will
eventually transform this into a formal syntax section written in Backus-Naur Form (BNF). If
you prefer to cut to the chase and provide BNF now, you are welcome to do so, but if that feels
like a big leap right now, try to describe the syntax in plain language.

(f) Semantics
As much as is needed. How is your program interpreted? This need not be formal yet, however,
you should demonstrate that you’ve thought about how your program will be represented and
evaluated on a computer. It should answer the following questions.

i. What are the primitive kinds of values in your system? For example, a primitive might be
a number, a string, a shape, or a sound. Every primitive should be an idea that a user can
explicitly state in a program written in your language.

ii. What are the combining forms in your language? In other words, how are values combined in
a program? For example, your system might combine primitive “numbers” using an operation
like “plus.” Or perhaps a user can arrange primitive “notes” within a “sequence.”

iii. How is your program evaluated? In particular,
A. Do programs in your language read any input?
B. What is the effect (output) of evaluating a program? Does the language produce a file or

print something to the screen? Use one of your example programs to illustrate what you
expect as output.

How to Organize

The project directory for this question should be called “q2”. You must use LATEX for your specification.

