
Lab 8
Due Wednesday, April 16 by 11:59pm

Handout 19
CSCI 334: Spring 2025

Coding Guidelines
In this lab, you will be working on a single, large program. This program should be developed within the
root directory of your repository. For full credit, your program must compile and run correctly.

As usual, your program will be run by using the dotnet run command. When mandatory arguments are
omitted, or when they don’t make sense, your program should provide usage output and exit with a nonzero
exit code. Users should never experience a program crash in this class; exceptions should be prevented from
arising or be caught whenever bad input is encountered. Think through problem corner cases carefully.

Turn-In Instructions

Turn in your work using your assigned git repository. The name of your repository will have the form https:
//aslan.barowy.net/cs334-s25/cs334-lab08-<USERNAME>.git. For example, if your CS username is
abc1, the repository would be https://aslan.barowy.net/cs334-s25/cs334-lab08-abc1.git.

You should have received an invite to commit to the repository via email. If you did not receive an email,
please contact me right away!

Group Programming Assignment
This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit your
solution. No code copying is allowed. Tell me who your partner is by committing a collaborators.txt file
to your repository. Be sure to commit this file whether you worked with a partner or not. If you
worked by yourself, collaborators.txt should contain something like “I worked by myself.” (5 points)

This assignment is due on Wednesday, April 16 by 11:59pm.

Reading

1. (Required) “Parsers”

2. (As Needed) “Previous readings on F#”

https://aslan.barowy.net/cs334-s25/cs334-lab08-<USERNAME>.git
https://aslan.barowy.net/cs334-s25/cs334-lab08-<USERNAME>.git
https://aslan.barowy.net/cs334-s25/cs334-lab08-abc1.git

Problems

Q1. (95 points) . Parsing with Combinators
JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data inter-
change format. JSON defines a small set of formatting rules for the portable representation of struc-
tured data. JSON is the de-facto data interchange format used on the web. In this lab, you will
implement a JSON parser in F# using parser combinators.

(a) The following grammar in Backus-Naur Form represents the JSON format,
<json> ::= <number> | <string> | <boolean> | <list> | <object>
<number> ::= n ∈ Z
<string> ::= " <ltr>∗ "
<ltr> ::= A .. Z | a .. z | 0 .. 9 | ␣ | <symbol>
<symbol> ::= , | . | ~ | ! | ? | @ | # | $ | % | ^ | & | * | (|) | - | + | _ | =
<boolean> ::= true | false
<list> ::= [<json> <more_list>]
<more_list> ::= ϵ | , <json> <more_list>
<object> ::= { <field> <more_object> }
<more_object> ::= ϵ | , <field> <more_object>
<field> ::= <string> : <json>

where .. represents a range of characters, ␣ represents a whitespace character, and ϵ represents
the empty string.

The following algebraic data type represents a JSON abstract syntax tree in F#.

type JSON =
| JNumber of int
| JString of string
| JBoolean of bool
| JList of JSON list
| JObject of (JSON * JSON) list

Provide an implementation for the parser function

parse(s: string) : JSON option

In other words, given a string s representing valid JSON, parse should return Some AST. When
given a string s that is not valid JSON, parse should return None.

You may use any of the combinator functions defined in the assigned reading on parser combinators
in your solution. You will likely need to use the pdigit, pletter, pchar, pstr, pseq, pbetween,
pleft, pright, peof, pmany0, pmany1, <|>, and |>> combinators. You will also likely need the
stringify, int, and id helper functions.

Note that F# requires us to define functions before we use them. If you look at the grammar for
the lambda calculus, you will see an obstacle: <json> depends on the definition for <list>, and
<list> depends on the defintion for <json>. Therefore, we cannot implement parsers for those
nonterminals without running afoul of F#’s rules. The recparser function is one way around
this chicken-and-egg kind of problem. It allows us to separate the declaration of a parser from its
definition. You should only need to use recparser once in this problem.

The first parser that appears in your implementation should be written like:

let json, jsonImpl = recparser()

recparser defines two things: a declaration for a parser called json and an implementation for
that same parser called jsonImpl. Later, once you have defined all of the parsers that json
depends on, write:

jsonImpl := (* your json parser implementation here *)

To be crystal clear, your code should probably have at least the following definitions in it,

let json, jsonImpl = recparser() (* declares that a json parser exists *)
let number : Parser<JSON> = ... (* defines a number parser *)
let strng : Parser<JSON> = ... (* defines a string parser *)
let boolean : Parser<JSON> = ... (* defines a boolean parser *)
let list : Parser<JSON> = ... (* defines a list parser *)
let object : Parser<JSON> = ... (* defines an object parser *)
jsonImpl := ... (* defines the json parser *)

however you will likely need to define some helper parsers along the way. Note that the above
intentionally misspells string as strng as the former is a “reserved word” in F#.

(b) Your JSON parser should read input from a file whose name is given on the command line. For
example, suppose you have a file, data.json, which contains

[{"x":1,"y":2,"z":3},{"x":2,"y":3,"z":4}]

then you should be able to run your parser on this input like so

$ dotnet run data.json

(c) The output of your program should be a prettyprinted version of the input after parsing it. If the
input is malformed, your program should print ”Invalid JSON” and exit without printing anything
else. Provide a function prettyprint(j: JSON) : string that turns an abstract syntax tree
into a string. For example, when reading the previous data.json file, the program fragment

let filename = args[0]
let input = System.IO.File.ReadAllText filename
let ast_maybe = parse input
match ast_maybe with
| Some ast -> printfn "%s" (prettyprint ast)
| None -> printfn "Invalid JSON"

should parse the file and print the JSON string back out. Do not worry about preserving inden-
tation in your prettyprinted JSON.

(d) (Bonus) For an optional challenge, extend your implementation to do one or more of the following:
i. Accept arbitrary amounts of whitespace between elements, like a real-world JSON parser.

See the examples/8-bonus.json file for an example.
ii. Produce a prettyprint function that idents any nested element by four characters as in the

example above. This will transform your program into a JSON formatter.
iii. Use the diagnosticMessage function to tell the user where their mistake is in the event that

their input does not parse.
iv. Refer to the JSON specification (https://datatracker.ietf.org/doc/html/rfc7159), find

any missing feature, and implement it in your parser.

https://datatracker.ietf.org/doc/html/rfc7159

If you decide to tackle any of the above, be sure to tell me that you attempted a bonus by
including a file BONUS.txt that explains what you did. Otherwise I may not notice your hard
work!

The last bonus item is challenging, but it is quite satisfying to produce a parser that can read
in arbitrary JSON you can find on the internet. If you’re looking to push yourself, give it a try!
HINT: start with the empty array.

Tips:
Parser combinators are an elegant and conceptually simple way to develop parsing algorithms. However,
parsing text is never easy, because machines read input very strictly, unlike humans. Therefore, the
operation of a parser is frequently counterintuitive. Here are some tips you should follow to make your
life easier.

(a) Start small and test often. The examples directory has sample inputs, ranked from easiest to
hardest. Choose the easiest input first, and implement only the parsing function(s) that make
that input work. Once you have satisfied yourself that your program works by testing it, choose
the next easiest input and repeat.

(b) If you create your own test inputs, watch out where you put whitespace characters. Unless you
explicitly write your parser to handle whitespace, it will not handle whitespace. Especially watch
out for trailing newlines. Some editors (e.g., nano) like to insert them automatically. By default,
the Visual Studio Code editor will not insert trailing newlines.

(c) You are strongly encouraged to use the <!> “debug parser” along with the debug function. To
debug, use debug instead of prepare. Better yet, use a DEBUG flag, which you can toggle on and
off as needed, to choose which function to call:

let DEBUG = true
// ... your code ...
let i = if DEBUG then debug input else prepare input

Place your files in your project root directory. You should be able to run your program on the command
line by typing, for example, “dotnet run data.json” and output like the kind shown above should
be printed to the screen.

Q2. (1
10

th bonus point) . Optional: Feedback
I always appreciate hearing back about how easy or difficult an assignment is.
For 1

10
th of a bonus to your final grade, please fill out the following Google Form.

https://forms.gle/rogKXiBC1RuTK2uf9

