
Handout 9
CSCI 334: Spring 2025

Converting Derivation Trees to Abstract Syntax Trees

The tree produced during a parse of a sentence using a grammar is called a derivation tree. Derivation
trees show every step of how we came to understand the structure of a sentence. Oftentimes, we don’t
need all of the information provided in a derivation. Indeed, sometimes the quantity of detail makes
understanding a structure more difficult.

For this reason, we often use an alternative tree form when trying to understand a structure. An
abstract syntax tree, or AST, gives us the essential structure of a parsed structure. Many students find
ASTs difficult to understand at first, because the rules for converting a derivation tree to an AST vary
from one language to another. Nevertheless, an AST always has the following properties:

• All of the interior nodes of an AST are operations.

• All of the leaf nodes of an AST are data.

Consider the lambda calculus expression λa.(ab)c. Its derivation tree and corresponding AST are
shown side-by-side.

<expr>

<abs>

<var>

a

<expr>

<app>

<expr><expr>

<parens>

<expr>

<app>

<expr><expr>

<value>

<var>

a

<value>

<var>

b

<value>

<var>

c

Figure 1: Derivation of λa.(ab)c.

λ

a @

@

a b

c

Figure 2: Abstract syntax tree for λa.(ab)c.

1



Lambda Calculus Conversion Rules
In Figure 1 we have a complete record of a parse using the class lambda grammar. Figure 2 is a more
compact representation of the same sentence, a small tree that shows only operations and data. What
gets discarded depends on the language being analyzed. In the lambda calculus, the only operations
are abstraction (λ) and application (@). Everything else is data.

With practice, you can derive an AST directly from a lambda expression. If you have trouble seeing
how this might be done, start by producing a derivation tree, then try converting the tree into an AST
using the rules below. When you are done, discard the topmost <expr>.

<value>

<var>

α α

Figure 3: Variables, where α is a variable like x.

<value>

v v

Figure 4: Numbers, where v is a number like 1.

<parens>

<expr>

e e

Figure 5: Parentheses, where e is some expression.

<app>

<expr><expr>

e1 e2

@

e1 e2

Figure 6: Application, where e1 and e2 are expressions.

<abs>

λ<var>.<expr>

α e

λ

α e

Figure 7: Abstraction, where α is a variable like x and e is an expression.

2


