
Lab 4
Due Wednesday, March 5 by midnight

Handout 8
CSCI 334: Spring 2025

Encoding Trees
Each question in this assignment must be answered by writing a function that returns a tree. To facilitate
working with trees, I provide some starter code, ParseViz.fs, in your repository. For each question, you
will need to create a new F# console program that opens this library’s module, ParseViz, just as your
previous assignments asked you to open CS334.

ParseViz comes with the following record datatype for encoding trees.

type Node = { label: string; children: Node list }

Suppose you have the following tree:

<expr>

<abs>

λ<var>.<expr>

x <var>

x

To use ParseViz, we encode every node in the tree as a Node, with the node’s text encoded as a label.
Child nodes are added to a Node’s list of children. The above tree is encoded as follows. I use lots of
whitespace to make things clear but you do not have to.

let tree =
{ label = "<expr>";
children = [
{ label = "<abs>";
children = [
{ label = "L<var>.<expr>";
children = [
{ label = "x";
children = []

};
{ label = "<var>";
children = [
{ label = "x";
children = []

}
]

}
]

}
]

}
]

}

The prettyprint function in ParseViz can be used to visualize the tree, which is helpful to check your
work. Use the following in your main function to print the tree to a string and to save that string to a
file.

let tree1_latex = prettyprint tree1
System.IO.File.WriteAllText("tree1.tex", tree1_latex)

The easiest way to view this output, which is a LATEX document, is to paste it into Overleaf. Alternatively,
if you have texlive installed, you can run the following on the command line,

$ pdflatex tree1.tex

and then view the resulting tree1.pdf file. Every CS lab computer has texlive pre-installed for your use.

For derivations, a correct tree will show non-terminals surrounded by <angle brackets> while terminals
will be bare. Whitespace does not matter, so feel free to add it if it helps you.

For lambda calculus derivations, be sure to encode expression as <expr>, application as <app>, abstractions
as <abs>, and variable as <var>. Non-terminals, like x, should be encoded without brackets. You should
also include the period, ., and lambda non-terminals in your derivation trees. You may either write L for
the lambda symbol, or if you’re feeling adventurous, the LATEX macro $\\lambda$, which will print a λ
character.

Coding Guidelines
Each question in this assignment should go into the appropriate project directory. For example, the solution
to question 1 should be in a folder called “q1”. When a solution is a program, one should be able to cd into
the question directory and then run your program by typing the command “dotnet run”, with additional
arguments depending on the question.

Every program should be split into two pieces: a “Program.fs” file that contains the main method and
associated program-startup helpers (if needed), and another “Library.fs” file that contains the function(s)
of interest in the question. Library code should be contained within a module named “CS334”. Be sure
to provide usage output (defined in main) for all programs that require arguments. For full credit, your
program should both build and run correctly.

Turn-In Instructions

Turn in your work using your assigned git repository. The name of your repository will have the form https:
//aslan.barowy.net/cs334-s25/cs334-lab04-<USERNAME>.git. For example, if your CS username is
abc1, the repository would be https://aslan.barowy.net/cs334-s25/cs334-lab04-abc1.git.

You should have received an invite to commit to the repository via email. If you did not receive an email,
please contact me right away!

Single-Author Programming Assignment
This is a solo lab. You may work with another classmate to understand what the problems ask, but you
are not permitted to develop solutions together. Submitted solutions must be exclusively your own. Please
refer to the section “single author programming assignments” in the honor code handout for additional
information. You do not need to submit a collaborators.txt file for this assignment. You are always
welcome to ask me for clarification if the above is unclear in some circumstance.

This assignment is due on Wednesday, March 5 by midnight.

https://www.overleaf.com/
https://aslan.barowy.net/cs334-s25/cs334-lab04-<USERNAME>.git
https://aslan.barowy.net/cs334-s25/cs334-lab04-<USERNAME>.git
https://aslan.barowy.net/cs334-s25/cs334-lab04-abc1.git

Reading

1. (Required) “Syntax”

2. (Required) “Introduction to the Lambda Calculus, Part 1”

Problems

Q1. (34 points) . Parse Tree
Encode the two possible derivation trees for the expression “1 - 5 + 24”. Each tree should be encoded
as one of the following functions.
let q1a() : Node = ...

let q1b() : Node = ...
q1a() should encode the tree where the first non-terminal after the start symbol is an addition expres-
sion. q1b() should encode the tree where the first non-terminal after the start symbol is a subtraction
expression. To solve this problem, refer to the grammar at the top of the section titled Ambiguity in
the reading, “Syntax”.
The project directory for this question should be called “q1”. Your functions should be in a module
called CS334 in a file called Library.fs and your main function should be in a file called Program.fs.

Q2. (33 points) . Handling Ambiguity
Encode derivation trees for the following expressions, assuming the precedence and associativity rules
shown in Table 2 of the reading, “Syntax.”

(a) 1 + 1 * 1 in the function q2a(),
(b) 1 + 1 - 1 in the function q2b(),
(c) 1 - 1 + 1 - 1 * 1, but give + higher precedence than -, in the function q2c()

The project directory for this question should be called “q2”. Your functions should be in a module
called CS334 in a file called Library.fs and your main function should be in a file called Program.fs.

Q3. (33 points) . Parsing Lambda Expressions
Given the following grammar for the lambda calculus,

<expr> ::= <var>
| <abs>
| <app>
| <parens>

<var> ::= x | y
<abs> ::= λ<var>.<expr>
<app> ::= <expr><expr>
<parens> ::= (<expr>)

encode derivations for the following expressions. Refer to the reading for precedence and associativity
rules.

(a) λx.xy in the function q3a(),
(b) λx.xλy.xx in the function q3b(), and
(c) (λx.λy.xy)(λx.xy) in the function q3c().

The project directory for this question should be called “q3”. Your functions should be in a module
called CS334 in a file called Library.fs and your main function should be in a file called Program.fs.

Q4. (1
10

th bonus point) . Optional: Feedback
I always appreciate hearing back about how easy or difficult an assignment is.
For 1

10
th of a bonus to your final grade, please fill out the following Google Form.

https://forms.gle/rogKXiBC1RuTK2uf9

