
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 20: Testing

1

Topics

Unit testing
Midterm exam review

2

Your to-dos

1. Study up for the midterm.
2. Lab 10 (project checkpoint #2), due Monday,

May 13 (group project).

3

334-20-lecture_2024-04-30 - April 30, 2024

Final project timeline

1. Minimally working version (Lab 9), due Mon 4/29
2. Mostly working version (Lab 10), due Mon 5/13
3. Project + video presentation, due Mon 5/20 (last day

of exams)

Ward Prize nomination deadline: May 6

4 If you want to be considered for the Ward Prize, please let me know and
try to get me a version of your project to look at before May 6. There is a
cash prize for the Ward Prize!

Unit testing

Unit testing is a quality-assurance method designed to find
bugs before software ships. A unit test consists of test
code written to exercise the functionality of a unit of code in
isolation. For example, in functional code, a unit is often
thought of as a module, function, or primitive operation.

Note that unit testing is usually not sufficient to determine
the correctness of code!

5

Popular Unit Test Frameworks

Java: JUnit

.NET: MsTest or NUnit

Python: built in!

Ruby: built in!

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Tons more!

Rust: built in!

Go: built in!

6

334-20-lecture_2024-04-30 - April 30, 2024

Regression

Unit testing helps prevent regressions.

A regression is a kind of software bug where a feature that
worked earlier stops working.

Because of their expressive and compositional nature,
regressions are very common in language development. By
developing a unit test suite alongside your implementation,
you will save time and write better code because you will
be able to detect regressions early.

7

Test-driven Development

Test-driven development is a software development
process that emphasizes writing a test for a planned
feature before implementing a planned feature.

Procedure:
1. Add a test.
2. Run all tests. The new test should fail.
3. Write the simplest implementation that should pass

the new test.
4. Run all tests. The new test should pass. If it does not,

go to 3.
5. Rewrite as needed to enhance readability or

maintainability.

8

(code)

9

334-20-lecture_2024-04-30 - April 30, 2024

Exam review

10

Recap & Next Class

This lecture:

Next lecture:

Midterm exam

Unit testing

11

334-20-lecture_2024-04-30 - April 30, 2024

