
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 19: Variables

1

Topics

Variables
Implementing variables

2

Your to-dos

1. Read Variables and Worse is Better before the
last week of class.

2. Lab 9 (project checkpoint #1), due Monday,
April 29 (group project).

3

334-19-lecture_2024-04-25 - April 25, 2024

Final project timeline

1. Minimally working version (Lab 9), due Mon 4/29
2. Mostly working version (Lab 10), due Mon 5/13
3. Project + video presentation, due Mon 5/20 (last day

of exams)

Ward Prize nomination deadline: May 6

4 If you want to be considered for the Ward Prize, please let me know and
try to get me a version of your project to look at before May 6. There is a
cash prize for the Ward Prize!

Variables

5

Variables

A variable is a named placeholder for a value in an
expression. At runtime, when a value is assigned to a
variable, that variable name is bound to the value within
the variable’s scope. When a variable is used in an
expression, the bound value is substituted into the
expression when the expression is evaluated.

6

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

7 Here’s a small program in a fantasy language. Observe that this small
program’s AST has some obvious candidates represented in its AST
(numbers, math operations) but that it also contains a couple new things,
namely variables, the assignment operator, and something called “seq.”
This last operation is “sequential composition” and many languages
explicitly model it in their ASTs, even though it may not be something a
programmer explicitly thinks about. In fact, we should be trying to think
deeply about what operations on a computer mean. We should explicitly
think about the fact that we “execute one line and then the next.” One
reason is that there are alternative ways of interpreting the meaning of a
multi-line program: imagine a language where all of the lines of code are
executed in parallel!

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq{ }

{ } is an “environment”

8 I have claimed many times that we should think of program evaluation as
a kind of tree traversal. We will use the same scheme here: a post-order
traversal of the tree. So we start at the top. But note that when we
introduce variables, we also need to introduce some additional
bookkeeping: a data structure called an “environment.” For a language
with only global variables, it is suffices to think of an environment as a
kind of dictionary or map.

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

9 Since seq needs to evaluate its children before it can be evaluated itself,
we start by evaluating the first expression.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

10 For assignment, we must evaluate the right hand side first.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

2

11

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

2

12 Now we evaluate the left hand side. Specifically, we are checking that the
left hand side is actually a variable.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

x 2

13 Once we have the evaluated right hand side and we know what variable
the left hand side refers to, we can bind the value 2 to the variable x. We
create a binding by adding it to our environment.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq{x → 2}

{ } is an “environment”

x 2

2

14 Observe that we pass both the result of evaluating := and the environment
back up the tree. This is accomplished by returning both values (as a
tuple) in our evaluator. Moreover, observe that here we define := so that it
returns a value. Assignment actually does work this way in many
languages, most notably C.

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

15 Now that we’ve evaluated the first expression in the seq, we turn to the
second. Observe that the environment containing the binding for x
follows us down the tree.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

16 Keep going to get the operands for exponentiation.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

17 Here, we need to know what value x has. This corresponds to a lookup in
our environment. If x were not bound in our environment, this would be a
runtime program error. You’ve probably seen this error before in Python.
It looks something like “undefined variable.” Note that Java does not
have this issue, because the compiler can prove that every variable is
either defined or not; if a variable is undefined, then the compiler refuses
to compile the program.

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

2

18 Now turn to the left hand side. Note that I chose to evaluate the exponent
before the base as per our rules of arithmetic, but you could make another
choice if you wanted to (but perhaps not while preserving the expected
result using classic arithmetic).

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

2

19

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

20 Finally we can evaluate the exponentiation.

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

3 2

9

21 Evaluate LHS of plus.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

9

22

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

3 2

9 1

23 Compute plus now.

334-19-lecture_2024-04-25 - April 25, 2024

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

9 1

10

24

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ } is an “environment”

x 2

2

3 2

9 1

10

10

25 And finally, seq itself must return something. If we follow the rule that F#,
Scala, and many other functional programming languages use, we return
the last expression evaluated, in this case the result of the addition.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

Cool, huh?

x 2

2

3 2

9 1

10

10

Every CS major should know this.

26 Knowing that this is how a program is evaluated is a serious superpower
when trying to debug. Keep in mind that the precise rules vary from
language to language! But if you want to be a killer hacker, look those
rules up. Every programming language worth using is very clear about the
meaning (i.e., “semantics”) of each datum and operation.

334-19-lecture_2024-04-25 - April 25, 2024

How does it work?

27 So how can we make something like this happen in a real language? See
the “blub” language posted on the course website for a complete
example. You may borrow any of the code you see there for your own
projects.

Recap & Next Class

Today:

Next class:
Scope / Midterm review

Variables

28

334-19-lecture_2024-04-25 - April 25, 2024

