
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: Program interpretation

1

Your to-dos

1. Read Parser Combinators if you have not
already done so.

2. Lab 8, due Monday, April 22 (partner lab).

2

Final project timeline

1. Minimally working version (Lab 9), due Mon 4/29
2. Mostly working version (Lab 10), due Mon 5/13
3. Project + video presentation, due Mon 5/20 (last day

of exams)

3

334-17-lecture_2023-04-18 - April 18, 2024

Announcements

•Midterm exam, in class, Thursday, May 2.
•Colloquium: Pre-registration info session Friday,
April 19 @ 2:35pm in Wege Auditorium.

• Learn about Computer Science courses offered Fall 2024.
• Talk to professors about their classes.
• Discuss CS major declaration.
• Meet other Computer Science students.

4

Topics

Program interpretation

5

What is a programming language?

6

334-17-lecture_2023-04-18 - April 18, 2024

What is a programming language?

MyPL

ç

7 Recall that a programming language is just a function. That function
typically takes two inputs: 1) the program itself, as a string, and 2) the
inputs to program, in whatever form is necessary. The output can be
anything (it depends on the language).

What is a programming language?

SQL

çSELECT * FROM Employee 

WHERE EmpId > 3000

8 For example, here is the SQL language. SQL is widely used for data
manipulation tasks. The input to SQL is a query and a set of database
tables. A database table can be thought of as something like a
spreadsheet. The output of a SQL query is a database table.

What is a programming language?

C

çint main() {…}

9 C is also a machine that takes a C program and some input. However,
most C implementations are compiled, so the output is usually a
sequence machine instructions. Running those instructions produces
some effect on the machine.

334-17-lecture_2023-04-18 - April 18, 2024

What is a programming language?

pluslang

ç(plus 1 2)

3

10 We are going to talk about a simple language today called pluslang. It
does not take any input other than the program itself.

What is a programming language?

MyPL

ç

11 Let’s expand on what’s inside this MyPL box.

What is a programming language?

parser evaluatorAST

ç

12 A programming language implementation usually has a frontend that does
lexical analysis tasks, like parsing. The result of the frontend is an AST.
The AST is then given as input to the backend, along with the input to the
program. The backend then evaluates the AST. If the language is
interpreted, the result of an evaluation is some effect on the computer. If
the language is compiled, the result of evaluation is the program in a
different form (e.g., machine code).

334-17-lecture_2023-04-18 - April 18, 2024

Program Interpreter

13 We are going to focus on interpretation.

Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly carries out the instructions implied by user code,
usually by traversing an abstract syntax tree and carrying
out the sequence of operations discovered during the
traversal.

14

Example

+

^

3 2

1

3^2 + 1

15 Here’s an example program and an AST the language’s parser might
produce. Observe that the operations that need to be carried out first are
near the bottom of the tree. Ensuring that the tree has the correct form is
the job of the frontend.

334-17-lecture_2023-04-18 - April 18, 2024

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

16 When we evaluate an AST (using a scheme called “eager evaluation”), the
algorithm usually follows something like a post-order traversal of the AST.
Let’s walk through this example. We start at the root. Recall in a post-
order traversal, we visit the children before we visit the node, and since
this node (+) has children, we recursively move on to those. The rationale
is that any node with children is an operation, and we need to realize the
values of the operands (which can themselves be operations) before we
can do the operation.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

17 We visit the first child, which actually is itself an operation. Therefore, we
must also visit its children recursively before we can do the operation.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

18 Finally, we find a node with no children. The evaluation of 3 is just 3, so
we return that result.

334-17-lecture_2023-04-18 - April 18, 2024

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3

19 We must also visit the node’s other child.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3

20 The result of 2 is 2.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

21 Now that we have results from both children of ^, we can evaluate 3^2.
Note that we can use exponentiation if that is available to us in the
language we are writing our programming language in, but if not, we may
need to implement it ourselves (e.g., by using the machine’s left shift
operation). We return the result of the exponentiation.

334-17-lecture_2023-04-18 - April 18, 2024

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9

22 The + node still has an unevaluated child, so we recursively evaluate the
child on the right.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9

23 The result of evaluating 1 is 1.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9 1

24 Finally, we can carry out and return the result of adding 9 and 1.

334-17-lecture_2023-04-18 - April 18, 2024

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9 1

10

This traversal is conveniently written as a recursive function.

25 This entire procedure can often be written as a recursive function.

pluslang

<expr> ::= (plus <expr> <expr>)

 | n ∈ ℕ

(plus 1 2)

(plus (plus 1 2) 3)

(plus (plus 1 2) (plus 3 4))

26 Here is the grammar for the language we are going to implement in class.
It is a small language, so we will be able to write the entire thing right now.
Here are also some example programs.

Let’s write the parser first

27 Start with the parser. See posted code.

334-17-lecture_2023-04-18 - April 18, 2024

Quiz

28 Hopefully, that was enough of a refresher on parsing that you are ready for
a quiz on parsing.

Let’s write the interpreter

29 Let’s now turn to the interpreter. The code is posted.

Recap & Next Class

Today:

Next class:
Testing / Variables

Program interpretation

30

334-17-lecture_2023-04-18 - April 18, 2024

