CSCI 334:
Principles of Programming Languages

Lecture 16: Parsing

Instructor: Dan Barowy
Williams

Topics

Parser combinators

Your to-dos

. Read Parser Combinators if you have not
already done so.
. Lab 8, due Monday, April 22 (partner lab).

. Project checkpoint #1, due Monday, April 29.

334-16-lecture_2024-04-16 - April 16, 2024



Announcements

*Midterm exam, in class, Thursday, May 2.

+Colloquium: Pre-registration info session Friday,
April 19 @ 2:35pm in Wege Auditorium.

¢ Learn about Computer Science courses offered Fall 2024.
« Talk to professors about their classes.

* Discuss CS major declaration.

* Meet other Computer Science students.

Parser Combinators

res es:“n”

Recall: mental model is of pipes. A parser is a pipe. Parser combinators
MAKE sections of pipe or glue them together.

334-16-lecture_2024-04-16 - April 16, 2024



Two varieties of parser

e Parsers that consume input. Correspond with
grammar terminals.

¢ Parsers that combine parsers. Correspond with
grammar non-terminals. Also called “combining
forms.”

¢ For flexibility, you can also have parsers that do
both.

7 Definitions of Input and Output.
Basic Primitives P O P
e Input
type Input = string * int * bool
e Qutput
type Outcome<'a> =
| Success of : 'a * : Input
| Failure of : int * : String
. 8 A Parser is a function from Input to Output. The ‘a represents the type of
Basic Primitives . . .
data returned, which is configurable.
* Aparseris
type Parser<'a> = Input -> Outcome<‘a>
e Keep in mind: a parser is a function.
9

334-16-lecture_2024-04-16 - April 16, 2024



Terminal parsers 10 Here’s an example of using a basic parser, d, that consumes input.
Observe that d is the parser. pchar ‘d’ is the function that MAKES the
pchar (c: char): Parser<char>
- " Here’s an example of a parser, dd, made by running the d parser twice in
Combining parsers ) ]
bseq sequence. The pseq function glues them together. dd runs the first d,
(pl: Parser<'a>) and if that is successful, runs the second d. If the second is successful, it
o takes the two outputs as a tuple and gives them to the function f. In our
: Parser<char> example, we convert x and y to strings, then concatenate them. (try
removing the ‘string’ functions and see what you get)
12

Combining parsers

e pseq :
pl:Parser<‘a>
->
p2:Parser<'b>
->
f:('a * '"b => 'c) -> Parser<‘c>

e pl isaparser.

334-16-lecture_2024-04-16 - April 16, 2024



Combining parsers

e pseq :
pl:Parser<‘a>
->
p2:Parser<'b>
->
f:('a * 'b -> 'c) -> Parser<‘c>

e p2 isaparser.

13

Combining parsers

e pseq :
pl:Parser<‘a>
->
p2:Parser<'b>
->
f:('a * 'b -> 'c) -> Parser<‘c>
« £ is afunction that takes the result of p1 and p2 and

does something with it. That something is up to you.

14

Let’s try it

e pseq (pchar ‘z’) (pchar ‘o’) id
® id is F#'s identity function.

® Let’s play with this in £sharpi.

15

Try this one on your own. You can load the combinator library in dotnet fsi

like so.

1. Put Combinator.fs in your current directory:

$ wget https://williams-cs.github.io

/cs334-s24-www/assets/code/

Combinator.fs.txt

$ mv Combinator.fs.txt Combinator.fs

2. Open the F# REPL.:

$ dotnet fsi

334-16-lecture_2024-04-16 - April 16, 2024



3. Load the Combinator library. This will print lots of stuff if successful.

> #load "Combinator.fs";;
4. Open the Combinator library.
> open Combinator;;
5. Now go ahead and use the library, e.g.,

> let myparser = pseq (pchar 'z') (pchar 'o') id;;

val myparser: Parser<char * char>

> myparser (prepare "zoo");;

val it: Outcome<char * char> = Success (('z', 'o'), ("zoo", 2,

More details

* ltis critical that you read the “Parser Combinators”
reading.

* | suggest that you sit down, uninterrupted, for an hour
or two, and work through the examples in fsharpi.

* The reading builds the Combinator. fs library that you

are given for HW8.

16

Example: brace language

* An expression is a sequence of ferms, consisting of at

least one term.
* Atermis either 'aaa', 'bbb', or a brace expression.

* A brace expressionis '{', followed by an expression,

followed by '}".

17 Here’s a language definition in plain English.

334-16-lecture_2024-04-16 - April 16, 2024



18 Here’s the same definition in Backus-Naur Form. Let’s implement this.
Example: brace language ]
See the bracelang project for sample code.
<expr> ::i= <term>* If you’re looking for a nice practice problem, here’s a good one. Write a
<term> $:= aaa . H
} bbb parser for this language. The start symbol is <expr>.
<br >
<brace> ::= { <Z§:r> }
<expr> = <two>"
Let’s write a parser for this language.
<two> ::=aa | bb | cc
19

Recap & Next Class

Today:

Parser combinators

Next class:

Program evaluation

334-16-lecture_2024-04-16 - April 16, 2024



