
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 16: Parsing

1

Topics

Parser combinators

2

Your to-dos

1. Read Parser Combinators if you have not
already done so.

2. Lab 8, due Monday, April 22 (partner lab).
3. Project checkpoint #1, due Monday, April 29.

3

334-16-lecture_2024-04-16 - April 16, 2024

Announcements

•Midterm exam, in class, Thursday, May 2.
•Colloquium: Pre-registration info session Friday,
April 19 @ 2:35pm in Wege Auditorium.

• Learn about Computer Science courses offered Fall 2024.
• Talk to professors about their classes.
• Discuss CS major declaration.
• Meet other Computer Science students.

4

Parser Combinators

5

6 Recall: mental model is of pipes. A parser is a pipe. Parser combinators
MAKE sections of pipe or glue them together.

334-16-lecture_2024-04-16 - April 16, 2024

Basic Primitives

• Input 
type Input = string * int * bool

• Output 
type Outcome<'a> =

| Success of result: 'a * remaining: Input

| Failure of fail_pos: int * rule: String

7 Definitions of Input and Output.

Basic Primitives

• A parser is 
type Parser<'a> = Input -> Outcome<‘a>

• Keep in mind: a parser is a function.

8 A Parser is a function from Input to Output. The ‘a represents the type of
data returned, which is configurable.

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

• Parsers that combine parsers. Correspond with

grammar non-terminals. Also called “combining

forms.”

• For flexibility, you can also have parsers that do

both.

9

334-16-lecture_2024-04-16 - April 16, 2024

Terminal parsers

pchar(c: char): Parser<char>

> let input = prepare "ddd";;
val input: Input = ("ddd", 0, false)

> let d = pchar 'd';;
val d: Parser<char>

> d input;;
val it: Outcome<char> = Success ('d', ("ddd", 1, false))

10 Here’s an example of using a basic parser, d, that consumes input.
Observe that d is the parser. pchar ‘d’ is the function that MAKES the
parser.

Combining parsers
pseq

 (p1: Parser<'a>)

 (p2: Parser<'b>)

 (f:'a -> 'b -> 'c)

 : Parser<char>

> let dd = pseq d d (fun (x,y) -> (string x) + (string y));;
val dd: Parser<string>

> dd input;;
val it: Outcome<string> = Success ("dd", ("ddd", 2, false))

11 Here’s an example of a parser, dd, made by running the d parser twice in
sequence. The pseq function glues them together. dd runs the first d,
and if that is successful, runs the second d. If the second is successful, it
takes the two outputs as a tuple and gives them to the function f. In our
example, we convert x and y to strings, then concatenate them. (try
removing the ‘string’ functions and see what you get)

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p1 is a parser.

Combining parsers
12

334-16-lecture_2024-04-16 - April 16, 2024

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p2 is a parser.

Combining parsers
13

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• f is a function that takes the result of p1 and p2 and

does something with it. That something is up to you.

Combining parsers
14

Let’s try it

• pseq (pchar ‘z’) (pchar ‘o’) id

• id is F#’s identity function.

• Let’s play with this in fsharpi.

15 Try this one on your own. You can load the combinator library in dotnet fsi
like so.

1. Put Combinator.fs in your current directory: 
 $ wget https://williams-cs.github.io/cs334-s24-www/assets/code/
Combinator.fs.txt

 $ mv Combinator.fs.txt Combinator.fs  
2. Open the F# REPL: 
 $ dotnet fsi  

334-16-lecture_2024-04-16 - April 16, 2024

3. Load the Combinator library. This will print lots of stuff if successful. 
 > #load "Combinator.fs";;  
4. Open the Combinator library. 
 > open Combinator;;  
5. Now go ahead and use the library, e.g.,  
 > let myparser = pseq (pchar 'z') (pchar 'o') id;;
 val myparser: Parser<char * char>
 > myparser (prepare "zoo");;
 val it: Outcome<char * char> = Success (('z', 'o'), ("zoo", 2,

More details

• It is critical that you read the “Parser Combinators”

reading.

• I suggest that you sit down, uninterrupted, for an hour

or two, and work through the examples in fsharpi.

• The reading builds the Combinator.fs library that you

are given for HW8.

16

Example: brace language

• An expression is a sequence of terms, consisting of at

least one term.

• A term is either 'aaa', 'bbb', or a brace expression.

• A brace expression is '{', followed by an expression,

followed by '}'.

17 Here’s a language definition in plain English.

334-16-lecture_2024-04-16 - April 16, 2024

Example: brace language

<expr> ::= <term>+
<term> ::= aaa
 | bbb
 | <brace>
<brace> ::= { <expr> }

Let’s write a parser for this language.

18 Here’s the same definition in Backus-Naur Form. Let’s implement this.
See the bracelang project for sample code.

If you’re looking for a nice practice problem, here’s a good one. Write a
parser for this language. The start symbol is <expr>.

<expr> ::= <two>∗

<two> ::= aa | bb | cc

Recap & Next Class

Today:

Next class:
Program evaluation

Parser combinators

19

334-16-lecture_2024-04-16 - April 16, 2024

