
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 13: Language Architecture

1

Topics

How do programs run?
Parser Combinators

2

Your to-dos

1. Lab 6, due Monday 4/8 (partner lab)
2. Read Parser Combinators for next week.

3

334-13-lecture_2024-04-04 - April 5, 2024

Announcements

•WCMA visit, Thursday, April 11.
•Colloquium: Algorithmic Approaches to Subset
Sum (and Other Hard Problems) at 2:35pm in
Wege Auditorium.

The Subset Sum problem is the most fundamental NP-
complete problem concerned with adding numbers together.
However, progress on exact algorithms for this problem has
been slow: Since Horowitz and Sahni's 1974 invention of the
"Meet-in-the-Middle" approach, our best algorithms have
relied on simple enumeration and dynamic programming
strategies. The lack of an algorithm for Subset Sum that
leverages our modern understanding of addition points to
important gaps in our knowledge about the behavior of the
integers.

4

Quiz

5 See posted solution.

How do programs run?

6

334-13-lecture_2024-04-04 - April 5, 2024

How do programs run?

int main() {
 printf(“hello\n”);
 return 0;
}

λmain

@

printf λ “hello\n”

seq

ret

0

1. lexical analysis (“front-end”)

2. evaluation (“back-end”)

1. 2.

7 A programming language is a program, and it has parts. Let’s explore
those parts. To a first approximation, a programming language has two
parts: the front-end and the back-end.

The front-end is responsible for lexical analysis which includes parsing.
The output of a lexical analysis is an abstract syntax tree.

The back-end is responsible for either generating a new program in a
different form (as in a compiler) or for running the program directly (as in
an interpreter). We will focus primarily on interpreters in this class.

Front-end: the parser

A parser is a function that takes as input a string of
symbols conforming to the rules of a formal grammar. If the
string is not a valid sentence in the language, the parser
rejects the string. If the string is a valid sentence in the
language, the parser accepts the string and outputs a data
structure that represents the meaning of the sentence.

For programming languages, meaning is generally
represented in the form of an abstract syntax tree (AST).
In an AST, conventionally, interior nodes are operations,
and leaves are data.

8

334-13-lecture_2024-04-04 - April 5, 2024

Front-end: the parser

The subject of today’s lesson.

9

Back-end: the evaluator

1. Interpreter
2. Compiler

There are two kinds of back-end:

10

eval

Interpretation

output

input

AST

11 An interpreter is a function. We often refer to its role as “evaluation” and
so the main function of an interpreter is often called “eval”. The
interpreter takes an AST and some program input and directly executes it.
Remember, an interpreter is itself a program, and it can written in any
general-purpose language (C, Java, etc). We will write interpreters in this
class using F#.

334-13-lecture_2024-04-04 - April 5, 2024

Interpretation Downsides

• Usually (very) slow  

(often 100-200x slower than compilation)

LET IT BE KNOWN
FOR ALL ETERNITY

THAT PHARAOH
TUTANKHAMUN

LOVES PIZZA

12 Interpreters are usually pretty slow. The intuition is that of having to
translate a document. It’s like having to pick through every word and
translate it one-by-one. We have to do this procedure even if we’ve seen
the document before. Slow.

Interpretation Advantages

• An interpreter is “just a program” so debugging a

language is the same as debugging any other

program.

13 Interpreters have the advantage that, compared to compilers, are
relatively easy to understand and debug. They’re a great starting point if
you want to try your hand at designing and implementing a programming
language.

Some interpreted languages

• Shell (e.g., bash)

• Python

• Ruby

• MATLAB

• R

• (sort of) Java and JavaScript

14 You’ve almost definitely used an interpreted language before.

334-13-lecture_2024-04-04 - April 5, 2024

compile

Compilation

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

output (machine code)

AST

15 Compilation is quite a different approach. Instead of running the program
directly, a compiler generates a version of the program in a different form.
That form is usually machine code, which is the computer’s “native”
language. Machine code can be executed efficiently on a machine.
However, compilers can also translate to a different language. For
example, the TypeScript compiler generates JavaScript.

Compilation

x86

input

AST

output

compile

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

output (machine code)

16 Note that the compiler is invoked separately from the program. This
allows one person (a developer) to run the compiler and another person,
like a customer, to run the program. The customer does not need to pay
the cost of analyzing the program, which is one reason why compiled
programs are faster than interpreters. The compilation cost is paid for by
the developer. If you’ve used commercial software (Windows, macOS,
Chrome, etc), you are almost always using a compiled program.

Some compiled languages
• C

• C++

• Go

• FORTRAN

• Java (sort of)

• C# (ditto)

• F# (ditto)

17 There are many compiled programs. These are probably the most
popular.

334-13-lecture_2024-04-04 - April 5, 2024

Compilation Advantages
• Usually (very) fast 

(only 1.5-2X slower than hand-optimized

assembly code)

• Compiled program is in machine (binary)

format; difficult to debug the language itself.

LET IT BE KNOWN
FOR ALL ETERNITY

THAT PHARAOH
TUTANKHAMUN

LOVES PIZZA

18 Compilation is not necessarily faster than interpretation. The intuition is
that compilation simply divides the work differently. Returning to our
analogy of having to translate a document in a foreign language,
compilation is like translating the document (much like how an interpreter
does it), but by saving the translation of to the side. The next time you
need the translation, you simply pull it from your pocket instead of re-
translation word for word. Much faster.

Compilation Example

19 Let us walk through a simple compilation step by step so that you can see how it works. We won’t spend much more time discussing
compilation in this class, so consider this a brief intro to whet your appetite.

Parsing

double position = initial + (rate * 60)

rate : double

*

60 : int

: double

+ : double

intial : double

20 Suppose we have a simple one line program in a language like Java or C. We first run a lexical analysis and produce an AST. One such
AST might look like this. Observe that our multiplication operation has two operands of different types. This may seem like no big deal to
you, but it’s generally a no-no for computers. We will need to convert that integer value into a double to be able to continue.

334-13-lecture_2024-04-04 - April 5, 2024

Intemediate Representation

rate : double

*

60 : int

: double

+ : double

intial : double

temp1 = convert_int_to_double(60)
temp2 = mult(rate, temp1)
temp3 = add(initial, temp2)
position = temp3

21 The back-end of the compiler usually starts by generating a program in a
new form we call an intermediate representation (IR). The IR is not the
final output. But the IR will help guide us to our final output. We obtain
the IR by traversing the tree in a depth-first manner. Note that every
intermediate result needs to be stored somewhere on a computer, and
when generating an IR, the compiler will usually put these intermediate
results in abstract memory locations called “temporaries.” If, at the end of
the compilation process, any temporaries remain, they must be explicitly
assigned to memory locations. As you will see, though, compilers usually
try to minimize the use of temporaries when they can.

“Optimization”

temp1 = mult(rate, 60.0)
position = add(initial, temp1)

temp1 = convert_int_to_double(60)
temp2 = mult(rate, temp1)
temp3 = add(initial, temp2)
position = temp3

22 If a human were to generate an intermediate representation, they would
immediately notice that the machine-generated form is inefficient. For
example, there really is no reason to convert the integer 60 into a floating-
point 60.0 every single time the program runs. It’s a literal value— why
not convert it just once at compile-time? Likewise, why assign the result
of the add to a temporary and then assign the temporary to the final
variable when we could just assign the add directly to the final variable?
A compiler’s optimizer is designed to shorten a program while retaining its

334-13-lecture_2024-04-04 - April 5, 2024

intended function. Note that an optimizer rarely (if ever) generates an
“optimally fast” program, so the word “optimization” is a bit of a
misnomer. However, the program usually does become faster.

Instruction Selection

temp1 = mult(rate, 60.0)
position = add(initial, temp1)

movf rate, fp2
mulf #60.0, fp2
movf initial, fp1
addf fp2, fp1
movf fp1, position

23 Lastly, the compiler convert the IR into the final machine code form. Because the IR is simple, and more closely resembles the semantics
of machine code than the source language, converting an IR into machine code is usually pretty straightforward. One complicating factor
that can have a big impact on performance is where variables are stored. Computers usually have two forms of memory: register
memory, which is extremely fast, and main memory, which is relatively slow. A great deal of complexity in this step comes from trying to
keep all of the user’s variables in fast register memory. When there are too many variables to fit in registers, some of them may need to
“spill over” to main memory. These so called “spills” can slow programs down tremendously.

Compilation Downsides
• Compilation can take a long time

• Cannot modify program without source code.

• Hard to evolve language; compilers are

complex.

24 Although compilation can result in faster programs than interpretation, the
process itself is complex and slow. Even now, big programs can take
hours or days to compile. A typically modern operating system still takes
on the order of days to compile.

334-13-lecture_2024-04-04 - April 5, 2024

Some hybrid (JIT) languages

• Java (C#, F#)

• JavaScript

25 There is a third category of programs, however. Just-in-time compiled
(JIT) languages. These are some of the most advanced programming
languages.

eval

JIT-Compilation

x86

input
movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

AST

output

26 A JIT compiler is a hybrid of an interpreter and a compiler. It starts by
interpreting the program. For simple programs, that may be all that
happens. However, the interpreter keeps track of which functions are
executed frequently (the so-called “hot functions”) and those functions are
sent off to a compiler running on the side. The compiler generates faster
versions of those functions in native machine code which are then
patched back into the data structure representation of the program being
used by the interpreter. When the interpreter encounters JIT-compiled
code, it runs that code natively, usually with a big speedup. JIT compiled
programs have the odd property that they tend to get faster the longer
they run. We call this phenomenon “warm up.”

334-13-lecture_2024-04-04 - April 5, 2024

History

• Surprisingly, compilers were invented before

interpreters.

• More obvious to early engineers.

27

Compilers: History

• Invented by Grace
Hopper in 1952 while
working on the A-0
and FLOW-MATIC
languages.

• Work eventually
became the COBOL
programming
language, still widely
in use today.

28 COBOL was one of the first languages that targeted ordinary users, by
expressing concepts in an English-like way. Although modern languages
like Python and Java may not seem very English-like to you, in
comparison to languages before COBOL, they are quite friendly. Modern
languages were strongly influenced by Grace Hopper’s work.

I used to be a mathematics professor. At that time I found
there were a certain number of students who could not learn
mathematics. I then was charged with the job of making it
easy for businessmen to use our computers. I found it was
not a question of whether they could learn mathematics or
not, but whether they would. […] They said, ‘Throw those
symbols out — I do not know what they mean, I have not
time to learn symbols.’ I suggest a reply to those who would
like data processing people to use mathematical symbols
that they make them first attempt to teach those symbols to
vice-presidents or a colonel or admiral. I assure you that I
tried it. — Grace Hopper

Compilers: History 29 Grace Hopper explaining why plan English style languages were
important.

334-13-lecture_2024-04-04 - April 5, 2024

Interpreters: History

• Invented by John
McCarthy in 1958
while working on
LISP.

• Invented as a
byproduct of
McCarthy’s thinking
about computation
from first principles.

• McCarthy wanted to
build computers that
could think!

• LISP was too resource
hungry for most uses at the
time.

30 Interpreters were invented shortly after compilers. The first was LISP,
which was invented by John McCarthy. McCarthy wanted the
programmers in his laboratory to be able to focus on solving problems in
AI, not in wrangling with peculiar low-level details of machine code. He
wanted the most powerful language he could get, so he patterned it after
the lambda calculus. LISP’s capabilities were so far ahead of their time
that most people had trouble wrapping their heads around it. In this class
we are learning a language that was directly influenced by LISP, so by
now, you know most of those concepts. Unfortunately, LISP required very
expensive computers to run with any kind of acceptable speed which put
LISP out of reach of most users for a very long time.

Parsers

31 Let’s start looking at the parts of languages in detail now, starting with the
front-end task of parsing.

334-13-lecture_2024-04-04 - April 5, 2024

Parser Combinators

32 There are many algorithms for parsing. You could spend an entire
semester on just parsing algorithms. They’re interesting and still an area
of active research. Nevertheless, in the interest of teaching you an
approach that you can use quickly, I have settled on parser combinators,
which is an approach that provides a straightforward way to build parsers.

33 I want you to keep an analogy in mind as you use parser combinators:
pipes. If you think about pipes, there are two phases of interaction with
them: first we build them and then we use them. Parser combinator work
much the same way. First we construct a data pipeline, then we put
things into the data pipeline. More concretely, this means that when you
call a parser combinator function, you are not running the parser; rather
you are constructing a parser program. You run it once you are done
constructing it.

34 Parser combinators are simple and logical. As long as you are follow the
guidelines as you build parsers, you can build sophisticated parsers that
are not confusing, much like how engineers can build sophisticated
pipelines.

334-13-lecture_2024-04-04 - April 5, 2024

35 Here’s a simple parser that only accepts the word “dan.” It is made out of
three kinds of simple parsers: 
1) a character parser (e.g., char ‘d’ just parses the letter d) 
2) an end-of-file parser (eof) that makes sure all of the input has been
parsed, and 
3) a glue parser that glues two parsers together (e.g., char ‘d’ and char
‘a’). 
 
We also see a user-defined function here, stringify, that takes the outputs
of the parsers and concatenates them together. When the input is “dan”,
the parser succeeds. The parser will fail on other inputs.

Parser Combinators
• A kind of recursive decent parser.

• A recursive descent parser is a parser built from
a set of mutually recursive procedures where
each such procedure usually implements one of
the productions of the grammar.

• Recursive descent parsers are “top-down,”
meaning that they recognize sentences by
expanding nonterminals, starting from the start
symbol.

• “Bottom-up” parsers start with terminal symbols
and work in the opposite direction, often utilizing
dynamic programming… these are more common
in practice!

36

334-13-lecture_2024-04-04 - April 5, 2024

Basic Primitives

• Input 
type Input = string * int * bool

• Output 
type Outcome<'a> =

| Success of result: 'a * remaining: Input

| Failure of fail_pos: int * rule: String

37 We will use a parser combinator library written by me in this class. It has
two basic primitives.

First, we have Input. An Input is a 3-tuple of an input string, our current
position in the string, and a flag that says whether the parsers should
output debug information.

Second, we have Output. An Output is either Success, which is a 2-tuple
of some kind of user-defined result and the remaining unparsed input, or a
Failure, which is a 2-tuple of the location of the failure in the input string
and a reason why the failure happened.

Basic Primitives

• A parser is 
type Parser<'a> = Input -> Outcome<‘a>

• Keep in mind: a parser is a function.

38 So a parser is a function that takes an Input and returns an Output.

We will see some example parsers in the next class.

334-13-lecture_2024-04-04 - April 5, 2024

Recap & Next Class

Today:

Next class:

Language architecture
Parser combinators

Growing a Language

More parsing

39

334-13-lecture_2024-04-04 - April 5, 2024

