
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 12: Reduction Proofs

1

Topics

Refresher: The Halting Problem
Reductions

Garbage Collection

2

Your to-dos

1. Lab 6, due Monday 4/8 (partner lab)
2. Be sure to read Proof by Reduction before

Thursday.

3

334-12-lecture_2024-04-02 - April 2, 2024

Announcements

•WCMA visit, Thursday, April 11.
•Colloquium: Algorithmic Approaches to Subset
Sum (and Other Hard Problems) at 2:35pm in
Wege Auditorium.

The Subset Sum problem is the most fundamental NP-
complete problem concerned with adding numbers together.
However, progress on exact algorithms for this problem has
been slow: Since Horowitz and Sahni's 1974 invention of the
"Meet-in-the-Middle" approach, our best algorithms have
relied on simple enumeration and dynamic programming
strategies. The lack of an algorithm for Subset Sum that
leverages our modern understanding of addition points to
important gaps in our knowledge about the behavior of the
integers.

4

The Halting Problem
Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Clarifications:
P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

5 Perhaps the most famous problem in decidability: the halting problem.
Can you write a program that can tell you whether another program halts
on a given input? We want this function to work for all possible programs.

The Halting Problem

… helps us to understand the difficulty of many
other problems.

6 Aside from the fact that undecidability and the halting problem in
particular are interesting, a big reason why we care about these ideas is
that decision problems pop up all the time in real life. For example the
question “are we done using this variable?” pops up when we want a
programming language to automatically manage memory resources for
us, a problem we call “garbage collection.” Another example is “if I install
this program, will it harm my computer?” which pops up in computer virus
detection. Can we solve those problems?

334-12-lecture_2024-04-02 - April 2, 2024

We can use the Halting Problem to show that other
problems cannot be solved by reduction to the
Halting Problem.

We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!

7 The shocking thing is… NO! We actually cannot solve garbage collection
or virus detection in their full generality. And if you can recognize that fact
early, you can either avoid a lot of pain and false promises, or you can
take proactive steps to change the problem a little to make some
solutions feasible. Programming languages DO automatically manage
memory, and the tradeoff is to do it imprecisely. Virus scanners DO detect
viruses, and the tradeoff is generality (i.e., by constraining the set of
programs that we analyze).

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

A Breducer

problem problem

8 So how DO we go about determining whether one kind of problem tells us
about another kind of problem? The answer is that we write a proof
called a “reduction.” This is a different kind of reduction than the
reductions we use in the lambda calculus (the name is an unfortunate
coincidence). A reduction simply shows that a reducer exists that
translates problems of type A into problems of type B. If we have a solver
for problems of type B, great, we can now solve problems of type A too.

Reductions
Reductions are often used in a counterintuitive way.

Bar Fooreducer

problem problem

For example, if we want to know whether problem Foo is
impossible, we assume Foo is possible, and then use that
fact to show that problem Bar (which we already know to
be impossible) appears to be possible.

The above is a contradiction, meaning that Foo is not
possible.

9 When we want to show that something is impossible, we use reductions
in a counterintuitive way. For example, suppose we want to show that
Foo is not possible. We construct a reduction such that the thing we
KNOW something about already (e.g., we know that Bar) is the problem
that gets reduced. Why? Because if it turns out that we CAN reduce a
Bar to a Foo, and we assume that we have a Foo, then it means that we
can also have a Bar. But we KNOW that we can’t have a Bar. Therefore
we cannot have a Foo.

334-12-lecture_2024-04-02 - April 2, 2024

I go into this argument in more detail in the “Proof by Reduction” chapter
of the course packet. Have a look. I kept it short and, hopefully, it will
help you understand this in more detail.

Reductions

An important part of a reduction is that the reducer be an
ordinary algorithm.

The reducer should not solve the problem. A reducer just
converts problems from one form to another.

You will get a lot more exposure to reductions in CSCI 361.

Bar Fooreducer

problem problem

10 Remember that a reducer should be an ordinary algorithm. And it just
changes the form of the problem. It does not attempt to solve it. Foo is
going to be doing the solving.

Reductions

A function f(i) halts not if and only if f does not halt on input i.

Is Halt0 is computable?

11 Let’s try a reduction. Remember, a reduction is just a function. Can we
convert a problem of type Halt into a problem of type Halt-not? Again,
recall, we make it work in this direction so that we can derive the right
kind of contradiction.

334-12-lecture_2024-04-02 - April 2, 2024

Reductions

A function f(i) halts not if and only if f does not halt on input i.

def halt(f, i):
 return not halt0(f, i);

If Halt0 is computable, couldn’t we do this?

Assume that Halt0 is computable.
(e.g., it’s in your standard library)

12 Solution. In a way, a reduction is just a wrapper function. Notice that the
direction of the reduction is a little counterintuitive. The way we’ve
constructed it, we are letting the user determine whether a function halts
on a given input by calling Halt0. Not the other way around.

Halt0

false

Reductions

Reduction: Construct Halt using Halt0.

Halt

true

int
main(… 1

13 Graphically, it works something like this.

Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is not computable.

14 To really belabor the point. Remember that we can’t do this.

334-12-lecture_2024-04-02 - April 2, 2024

Reductions

If we can build this new machine,
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int
main(… 1

15 But… our reduction, which was an ordinary program, showed that it was
possible to construct a Halt problem. Our only assumption was that Halt-
not existed. Therefore, it might be the case that Halt-not exists. Halt-not
is undecidable.

Why does this proof work?

The proof relies on the logical implication,

A ⇒ B

In plain language, we read this as “if A is true, then B is
true.”

For example, one (true) logical implication is:

it is sunny ⇒ it is not cloudy

16 Let’s try to understand what makes the proof tick. The first idea is that of
a “logical implication.” A logical implication is a statement of the form “if
A then B” which we conventionally write as A ⇒ B. Logical implications

themselves are statements that can be true or false. But if the implication
is valid, it lets us form chains of reasoning. For example, a true logical
implication is “if it is sunny then it is not cloudy.”

Why does this proof work?
But just look outside, and it is

Combined with “it is sunny ⇒ it is not cloudy”, 
what can we conclude?

17 Implications can be used in two ways though. For example, if we look
outside, we can see that it is CLOUDY. In other words it is true that “not
(it is not cloudy)”. Therefore, we can conclude that “not (it is sunny)”.

334-12-lecture_2024-04-02 - April 2, 2024

Why does this proof work?

So logical implications can be used in two different ways.

A ⇒ B

If you know that A is true, then you also know that B is true.

If you know that B is false, then you also know that A is false.

18 More generally, if you know that A is true, then an implication tells you that
B is true.

Conversely, if you know that B is false, then an implication tells you that A
is false.

Why does this proof work?

The proof relies on the logical implication,

 Halt0 is computable ⇒ Halt is computable

Which is clearly a true statement, since we can actually
construct a function that computes Halt if we are given a
function that computes Halt0.

But we know that Halt is not computable.

So…

19 So our reduction proof works because our implication is “if Halt0 is
computable then Halt is computable.” That’s a true statement
demonstrated by the fact that we were able to write a Halt function that
calls Halt0. The key thing to know about logical implication is that it just
ties the truth of two facts together. By itself, it says nothing about
whether either of them is actually true or false.

That said, we ALREADY KNOW “not (Halt is computable)”. Therefore “not

Reduction Activity

20 Try one on your own.

334-12-lecture_2024-04-02 - April 2, 2024

Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly integrated
into a programming language runtime.

21 One of the most famous uncomputable problems is garbage collection.
But it’s only uncomputable when stated in a very strong form, known as
“precise garbage collection.” In practice, because precise garbage
collection it not computable, we solve a weaker form of garbage
collection. We solve it imprecisely. Exactly why imprecise garbage
collection is OK is the subject of this week’s lab.

John McCarthy

22 Garbage collection (GC) was invented by John McCarthy when he
invented LISP. The reason GC was needed was because he did not want
his programmers to have to worry about memory management and
related bugs while they were trying to solve other trough questions about
how artificial intelligence should work. He invented two algorithms,
“reference counting GC” and “mark-sweep GC.” Each has a tradeoff.
Reference counting is very fast. Mark-sweep is comparatively slow.
However, reference counting cannot collect object graphs containing
cycles (e.g., it cannot correctly collect something like a doubly-linked list).
Which GC algorithm your language uses depends on the goals of the
language designer. You’ve probably mostly encountered mark-sweep (or
one of its variants) because that’s what Python, Java, etc use.

334-12-lecture_2024-04-02 - April 2, 2024

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location “mark” bit

23 Here I have a simple memory layout with a call stack (to the left) and a heap (to the right). Recall that the call stack keeps track of active
functions, and it stores each function’s local variables. If a variable refers to an object, the object itself is actually stored on the heap, and
the variable on the stack simply stores a pointer to the object. Since objects themselves can also store references to other objects, what
you have is an object graph that looks a bit like this. In reality, all of these data structures are stored in one big array, because that’s what
memory is. But you also know that data structures are all about abstraction, and so here’s the memory abstraction that a programming
language provides.

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

24 When the mark-sweep algorithm is called, it starts by tracing references on the stack into the object graph in the heap. For every
reachable object, it flips the “mark bit” from 0 to 1.

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

25

334-12-lecture_2024-04-02 - April 2, 2024

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

26

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

27

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

28

334-12-lecture_2024-04-02 - April 2, 2024

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells

29 At the conclusion of the “marking” phase, all of the objects with 0’s in their mark bits are reclaimed for reuse (or “swept”).

3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

30 Finally, all of the 1s are reset back to 0s so that the algorithm can start over.

(students sometimes ask: couldn’t you just skip the last step and remember that 1 now means “unmarked”? and the answer is, definitely,
yes, that’s a nice optimization)

Recap & Next Class

Today:

Next class:

The Halting Problem
Reductions

Type inference

Garbage Collection

31

334-12-lecture_2024-04-02 - April 2, 2024

