
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: Undecidability

1

Topics

The Halting Problem
Reductions

2

Your to-dos

1. Lab 5, due Monday 03/11 (partner lab)
2. Start studying for the midterm

3

334-11-lecture_2024-03-07 - March 7, 2024

Announcements

•Midterm exam, in class, Thursday, March 14.
•Colloquium: Thinking About Graduate School?
2:35pm in Wege Auditorium.

CS faculty will discuss your burning questions about graduate
school including; deadlines, personal statements, finding an
advisor, research, application process, and choosing the right
school.

4

Quiz

5

Decidability Problems

A decidability problem is a question with a yes
or no answer about an input.

“Is x prime?”

In CS, we care about whether there is an
algorithm for solving decidability problems.

If there is no algorithm, then the problem is
undecidable.

Generally, we want algorithms that work for all
inputs in a domain.

6 Now that we have some terminology to discuss functions, let’s turn to
decidability.

334-11-lecture_2024-03-07 - March 7, 2024

The Halting Problem
Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

How might this work?
Clarifications:

P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

7 Perhaps the most famous problem in decidability: the halting problem.
Can you write a program that can tell you whether another program halts
on a given input? We want this function to work for all possible programs.

The Halting Problem

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Decide whether program P halts on input x.

8 This turns out not to be possible. Recall the dream of Leibniz, Hilbert, etc:
that maybe we could make a machine that could answer any logical
question. There’s nothing obviously illogical about this question. So to
discover that it is fundamentally impossible was seriously disappointing to
many.

Notes on the proof

We use two key ideas:

• Function evaluation by substitution
• Reductio ad absurdum (proof form)

9 Let’s walk through the proof. We need to know about two proof
techniques.

334-11-lecture_2024-03-07 - March 7, 2024

Function Evaluation by Substitution
def addone(x):
 return x + 1

addone(1)

[1/x]x + 1

1 + 1

(λx.(+ x 1))1

([1/x](+ x 1))

(+ 1 1)

22

10 You’ve seen evaluation by substitution before. Not only it is the way
functions really work (see Python function on the left), it’s how our
foundational model about computation works too. Functions are
essentially substitution machines.

The form of the proof is reductio ad absurdum.
Literally: “reduction to absurdity”.
Start with axioms and presuppose the
outcome we want to show.
Then, following strict rules of logic, derive
new facts.
Finally, derive a fact that contradicts another
fact.
Conclusion: the presupposition must be false.

Reductio ad absurdum 11 Reductio ad absurdum is an important proof technique and the proof
about the Halting Problem relies on it.

Reductio ad Absurdum

A1 A2 A3

H

F1

F2

¬A3

¬

😧

12 The basic idea is to start by assuming the inviolable truths (the “axioms”;
the As on the pillar) and also the claim (the “hypothesis,” H) you want to
disprove. Then, using the rules of logic, we combine our axioms and our
hypothesis to derive new facts (the Fs). If we’ve done this work correctly,
and H truly is false, then we will derive a contradiction. One basic axiom
is a statement like “x is true and x is false” cannot be true. So if we derive
a contradiction like that, then our hypothesis must be false.

334-11-lecture_2024-03-07 - March 7, 2024

Reductio ad Absurdum

https://www.youtube.com/watch?v=sVUMAqMmy7o

13 Here’s another person saying the same thing, using Galileo’s famous
reductio ad absurdum proof that heavy objects cannot fall faster than light
objects.

The Halting Problem

Notes on the proof:

The proof relies on the kind of substitution
that we’ve been using to “compute” functions
in the lambda calculus.

Remember: we are looking to produce a
contradiction.

The proof is hard to “understand” because the
facts it derives don’t actually make sense.
Don’t read too deeply.

14

The Halting Problem: Proof
Suppose:

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Construct:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

{Halt always
halts!

{
DNH

does not
always halt!

15 We define Halt simply. Observe that Halt is a total function. Since we
want to prove something about Halt, using reductio ad absurdum, we
assume that we have a Halt function. Imagine that it is in your
programming language’s standard library. E.g., we can write ‘import
java.util.Process.*’ and there we have it.

We also define another function DNH. Observe that DNH is partial,
because it Does Not Halt when Halt(P,P) is true. Also observe that we did

334-11-lecture_2024-03-07 - March 7, 2024

not do anything that violates the rules of logic (or of programming
languages). We can easily write DNH in our language of choice (e.g.,
Java) provided that Halt is in our standard library.

You might be wondering why the heck we would want to call Halt(P,P), but
hang on for a minute. Trust me that there’s a good reason.

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

16 So here I just restate in plain English what our DNH definition tells us.

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
returns false otherwise

17 In fact, let’s simplify our DNH definition a little more.

334-11-lecture_2024-03-07 - March 7, 2024

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

18

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if P(P) halts.
DNH(P) will halt if P(P) runs forever.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

19 But hey, we can update our definition too. Let’s make it as simple as
possible.

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

P PP
P PP

20 So here’s a simple, but probably not obvious observation about what we
have so far. If Halt made it possible to write DNH, and DNH can take in
ANY PROGRAM, and DNH is itself a program, couldn’t we call DNH with
itself?

334-11-lecture_2024-03-07 - March 7, 2024

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

DNH DNHDNH
DNH DNHDNH

This literally makes no sense. Contradiction!

Therefore, the Halt function cannot exist.

What was our one assumption? Halt exists.

21 So if P is DNH, what does that mean? Here we use our “evaluation by
substitution” trick. We just replace P with DNH.

But, OH NO. What have we done?!!! This makes no sense at all!

Of course, that was our aim all along. Since the only iffy assumption we
made was that Halt exists in our standard library, then this means that it
CANNOT EXIST!

Need more explanation?
Watch this!

https://youtu.be/macM_MtS_w4

22 If you are new to this style of reasoning, it’s a little hard to wrap your mind
around it. I encourage you to watch this excellent video to hear the proof
explained in a slightly different (but essentially the same) way.

Many of you probably plan to have careers in science or mathematics.
This style of reasoning is very common in technical fields, so you will be
well served by learning to become comfortable arguing this way. It might
not help you win any arguments with your partner, but it will certainly help

The Halting Problem

… helps us to understand the difficulty of many
other problems.

23 Aside from the fact that undecidability and the halting problem in
particular are interesting, a big reason why we care about these ideas is
that decision problems pop up all the time in real life. For example the
question “are we done using this variable?” pops up when we want a
programming language to automatically manage memory resources for
us, a problem we call “garbage collection.” Another example is “if I install
this program, will it harm my computer?” which pops up in computer virus
detection. Can we solve those problems?

334-11-lecture_2024-03-07 - March 7, 2024

We can use the Halting Problem to show that other
problems cannot be solved by reduction to the
Halting Problem.

We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!

24 The shocking thing is… NO! We actually cannot solve garbage collection
or virus detection in their full generality. And if you can recognize that fact
early, you can either avoid a lot of pain and false promises, or you can
take proactive steps to change the problem a little to make some
solutions feasible. Programming languages DO automatically manage
memory, and the tradeoff is to do it imprecisely. Virus scanners DO detect
viruses, and the tradeoff is generality (i.e., by constraining the set of
programs that we analyze).

Generality
def myprog(x):
 return 0

def Halt(f,i):
 if(f = “def myprog(x):\n\treturn 0”):
 return true
 else
 return false

The Halting Problem is about any arbitrary
program.

25 So it’s important to remember that the Halting Problem, and many other
questions about decidability, are the strongest possible form of those
questions. The Halting Problem considers whether it is possible to write
an algorithm that can tell you whether ANY PROGRAM halts. We know
that we cannot do that. But if you restrict your domain; if you are willing
to sacrifice generality, of course there are some solutions. E.g., I can
easily detect whether this specific program halts. And if I know my
lambda calculus, I might even be able to detect when somebody tries to
slip the same function with different names past me. But it will never work
for ANY program.

334-11-lecture_2024-03-07 - March 7, 2024

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

A Breducer

problem problem

26 So how DO we go about determining whether one kind of problem tells us
about another kind of problem? The answer is that we write a proof
called a “reduction.” This is a different kind of reduction than the
reductions we use in the lambda calculus (the name is an unfortunate
coincidence). A reduction simply shows that a reducer exists that
translates problems of type A into problems of type B. If we have a solver
for problems of type B, great, we can now solve problems of type A too.

Reductions
Reductions are often used in a counterintuitive way.

Bar Fooreducer

problem problem

For example, if we want to know whether problem Foo is
impossible, we assume Foo is possible, and then use that
fact to show that problem Bar (which we already know to
be impossible) appears to be possible.

The above is a contradiction, meaning that Foo is not
possible.

27 When we want to show that something is impossible, we use reductions
in a counterintuitive way. For example, suppose we want to show that
Foo is not possible. We construct a reduction such that the thing we
KNOW something about already (e.g., we know that Bar) is the problem
that gets reduced. Why? Because if it turns out that we CAN reduce a
Bar to a Foo, and we assume that we have a Foo, then it means that we
can also have a Bar. But we KNOW that we can’t have a Bar. Therefore
we cannot have a Foo.

I go into this argument in more detail in the “Proof by Reduction” chapter
of the course packet. Have a look. I kept it short and, hopefully, it will
help you understand this in more detail.

334-11-lecture_2024-03-07 - March 7, 2024

Reductions

An important part of a reduction is that the reducer be an
ordinary algorithm.

The reducer should not solve the problem. A reducer just
converts problems from one form to another.

You will get a lot more exposure to reductions in CSCI 361.

Bar Fooreducer

problem problem

28 Remember that a reducer should be an ordinary algorithm. And it just
changes the form of the problem. It does not attempt to solve it. Foo is
going to be doing the solving.

Reductions

2

Plus

1

3

The humble algorithm.

(sorry, vegetarians)

29 Here’s a super concrete example of a reduction. Suppose we want to
build a Plus machine.

Reductions

2

Plus

1

Minus

3

30 But, because we didn’t have much money, we bought a computer that
can only subtract. Can we still add with that machine? In other words,
can we reduce the problem of adding to the problem of subtracting?

334-11-lecture_2024-03-07 - March 7, 2024

Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = -(-x-y)

31 Yes! In fact, here’s a reduction that does that. Observe that our reducer is
an ordinary function. No tricks.

Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is not computable.

32 So, turning back to the Halting problem, we know that Halt is not
computable. Put that in your back pocket so that you can whip it out at a
moment’s notice.

Halt0

true

int main(…){
…
return 0
}

Reductions

Is Halt0 computable?
A function f(i) halts not if and only if f does not halt on input i.

1

33 Here’s a (possibly silly) question. Is Halt-not computable? A function
halts not if and only if it does not halt on input i.

(this turns out to be the inverse of the statement of the Halting problem)

The answer to this might be obvious to you, but how do we really prove it
one way or the other?

334-11-lecture_2024-03-07 - March 7, 2024

Reductions

A function f(i) halts not if and only if f does not halt on input i.

def halt(f, i):
 return not halt0(f, i);

If Halt0 is computable, couldn’t we do this?

Assume that Halt0 is computable.
(e.g., it’s in your standard library)

34 Let’s try a reduction. Remember, a reduction is just a function. Can we
convert a problem of type Halt into a problem of type Halt-not? Again,
recall, we make it work in this direction so that we can derive the right
kind of contradiction.

Halt0

false

Reductions

Reduction: Construct Halt using Halt0.

Halt

true

int
main(… 1

35 Graphically, it works something like this.

Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is not computable.

36 To really belabor the point. Remember that we can’t do this.

334-11-lecture_2024-03-07 - March 7, 2024

Reductions

If we can build this new machine,
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int
main(… 1

37 But… our reduction, which was an ordinary program, showed that it was
possible to construct a Halt problem. Our only assumption was that Halt-
not existed. Therefore, it might be the case that Halt-not exists. Halt-not
is undecidable.

We will do more of these proofs after spring break. For now, just
appreciate how cool (or disappointing) it is that we know that we cannot
solve certain kinds of problems. I personally think that the fact that many
problems are undecidable is one of the constraints that makes computer
science an interesting challenge. And we’ll talk about how people
address these problems—particularly garbage collection—after the break.

Recap & Next Class

Today:

Next class:

The Halting Problem
Reductions

Midterm Review

38

334-11-lecture_2024-03-07 - March 7, 2024

