
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: Higher Order Functions

1

Topics

Higher order functions

2

Announcements

•CS Colloquium this Friday, Mar 1 @ 2:35pm in
Wege Auditorium (TCL 123)

Lightweight, Modular Verification for Systems
Compilers
Prof. Alexa VanHattum (Wellesley)

Language-level system guarantees, like runtime isolation for
WebAssembly modules, are only as strong as the compiler that
produces a native-machine-specific executable. Subtle wrong-
code bugs in the compiler can introduce serious security flaws.
In this talk, I’ll describe Crocus, our system for lightweight,
modular verification of instruction-lowering rules in
Cranelift, an industry WebAssembly compiler. Crocus reproduces
known bugs (including a 9.9/10 severity security bug) and
identifies previously-unknown bugs and underspecified compiler
invariants. More broadly, I’ll discuss how integrating
lightweight formal methods can free systems engineers from
having to choose between prioritizing efficiency and
correctness.

3

334-09-lecture_2024-02-29 - February 29, 2024

Your to-dos

1. Lab 4, due Monday 3/4 (solo lab)
2. Reminder: office hours today, 2-3pm, TPL 306

4

Quiz

5

Quiz: debriefing and tip

6 Pro tip: use your code editor to help match parens when you are doing
problem sets.

334-09-lecture_2024-02-29 - February 29, 2024

Higher order functions

7 HOFs are one of the most important features of functional languages, and
its something that makes them stand apart from conventional languages.
HOFs give you great flexibility in how you design programs.

Three amazing functional concepts

•First-class functions

•Higher-order functions

•map

•fold

8 If you learn only three ideas about functional programming this semester, I
hope it is these three ideas. First-class functions, map, and fold. Nearly
any program that uses loops can instead be expressed using these three
ideas.

a function

+1

3

4

9 I want you to think of functions simply, in their mathematical sense. A
function is a machine that takes an input and returns an output. Any other
kind of “function” is not a function in a true sense. For example, a
machine that does something off on the side without returning anything is
not a true function; it is more properly called a “procedure.”

334-09-lecture_2024-02-29 - February 29, 2024

“first class” function

Function definitions are values in a

functional programming language

10 A first class function means that function definitions themselves are
values. You can use them anywhere you can use ordinary values. You
can assign them to variables. You can pass them as arguments in
function calls. Few programming languages allow you to do this, but the
most popular modern ones are adding this capability. E.g., you can do
this in Python.

a function

+1

3

4

11 Returning to our simple notion of a function…

a function
12 … this is an example of a higher-order function. Observe that it depends

on the existence of first class functions. A higher order function takes a
function definition as an argument.

334-09-lecture_2024-02-29 - February 29, 2024

2

4

3

5

6

1

3

2

4

5

map

Like a for loop, but without mutable variables

(fun x -> x + 1)

Intuition:

13 Our first example of a higher order function is map. Map takes a function
as an argument, and it applies it to every element given to it. You can
accomplish the same thing with a loop, but observe that this is actually
simpler. The “body” of this “loop” only says what to do when given a
single element. It does not worry about “how” to access the element from
the list, or where to store it when it is done. List.map returns a new list,
and assuming that the given function is O(1), List.map takes O(n) time, so
it is efficient.

map

1

3

2

4

5

2

4

3

5

6

Key observation:

Intuition:

n things in, n things out

14 An important fact about map is that if you give it n things, you get n things
back. Observe that for and while loops give no such guarantees, even
when that’s what you want them to do. It’s pretty easy to write a while
loop that is supposed to return n things but actually returns n - 1 things
instead, by accident. Such mistakes are impossible when using map.

map

map

[1;2;3;4;5]
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

[2;3;4;5;6]

15 How does it work? List.map will apply the given machine (here a +1
machine) to every element of the input list, yielding a new output list.

334-09-lecture_2024-02-29 - February 29, 2024

map

Intuition:

16 The intuition behind map is that is behaves like a worker in an assembly
line. That one workers does the same thing over and over. For example,
the first person in the line may just put the knobs on the radios. The next
person may attach the power cords. And so on. Each person is a
“mapper.”

map

List.map: (‘a -> ‘b) -> ‘a list -> ‘b list;

(aka “projection”)

17 List.map is a function that takes a function called a “mapper” and an input
list, and it applies the mapper to every element of the list. This operation
is sometimes called a “projection.”

map
List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

18 Again, observe we’re just adding +1 to each element.

334-09-lecture_2024-02-29 - February 29, 2024

pipelines

[2;8;22;4]

|> List.map (fun x -> x + 1)

|> List.map float

|> List.map (fun x -> x / 3.3)

|> List.sort

[0.9090909091; 1.515151515; 2.727272727;

6.96969697]

19 You can make an actual “assembly line” by chaining mappers together.
Forward pipe makes these chains easy to read because the first
operations come first. For example, x + 1 is performed first, then the
conversion to float, then division by 3.3, etc. Think about how you would
have to write this in Java. First, you would probably have to define a
function for each “worker” in the assembly line; but then you’d have to
write the assembly like “inside out.” I find the above much easier to
understand.

fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr

 (car

 (cons

 (cons ‘a ‘b)

 (cons ‘c ‘d)

)

)

)

evaluation

20 Fold is another important kind of higher order function. It can be used for
any problem that exhibits structural recursion. Structural recursion
happens any time we need to solve a problem over a recursive data
structure. E.g., lists and trees.

fold

List.fold:

('a -> 'b -> 'a) -> 'a -> ‘b list -> 'a

(aka “reduce”)

21 List.fold is a function that takes a function called a “folder,” an initial value
of a value called the “accumulator,” and an input list. It then “folds” the
accumulator and a list element together, returning a new accumulator.
The process repeats until there are no more elements to fold. The value
returned is the final value of the accumulator.

334-09-lecture_2024-02-29 - February 29, 2024

fold

Intuition:

Key observation:
n things in, 1 thing out

22 The intuition is like a person folding a towel. Unlike mapping, fold takes in
n things and returns 1 thing. Importantly, it is accumulating those n things
into a single thing. The idea of an accumulator is central to folding.

fold

1

3

2

4

5

1

3

2

4

5

(fun acc x -> acc + x)

Intuition:

+

3 +

6 +

10+

0 + 1

15

23 For example, suppose we want to sum some numbers. We can define
this using fold. Fold takes a “folder” which is a function that says how to
accumulate (add two numbers), a default accumulator value (zero), and an
input list (some numbers). For each element, fold runs the given function
on the latest value of the accumulator with that element. For example, in
the beginning, the accumulator is zero and we add it to the first element
of the list, one. The result is the new value of the accumulator. So the
second element, two, is added to one. Three is new value of the

fold left
List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4]

acc = 0+1, [2;3;4]

acc = 1+2, [3;4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

24 Another view of the same computation.

334-09-lecture_2024-02-29 - February 29, 2024

what does this return?

List.fold

 (fun acc x -> acc + string x)

 ""

 (Seq.toList "williams")

25 Try this at home. What does it return. Why?

Recap & Next Class

Today:

Next class:

The Halting Function

Higher order functions

More HOFs

26

334-09-lecture_2024-02-29 - February 29, 2024

