
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 8: Lambda, lambda, lambda!

1

Topics

Lambda calculus—how to survive it

2

Your to-dos

1. Lab 4, due Monday 3/4 (solo lab)
2. Review feedback if you haven’t already…

3

334-08-lecture_2024-02-27 - February 27, 2024

Announcements

•CS Colloquium this Friday, Mar 1 @ 2:35pm in
Wege Auditorium (TCL 123)

Lightweight, Modular Verification for Systems
Compilers
Prof. Alexa VanHattum (Wellesley)

Language-level system guarantees, like runtime isolation for
WebAssembly modules, are only as strong as the compiler that
produces a native-machine-specific executable. Subtle wrong-
code bugs in the compiler can introduce serious security flaws.
In this talk, I’ll describe Crocus, our system for lightweight,
modular verification of instruction-lowering rules in
Cranelift, an industry WebAssembly compiler. Crocus reproduces
known bugs (including a 9.9/10 severity security bug) and
identifies previously-unknown bugs and underspecified compiler
invariants. More broadly, I’ll discuss how integrating
lightweight formal methods can free systems engineers from
having to choose between prioritizing efficiency and
correctness.

4

Announcements

•Midterm exam, Thursday, March 14, on paper, in
class.

•Resubmissions are due by the last day of the
final exam reading period.

COOKIES

5

6

334-08-lecture_2024-02-27 - February 27, 2024

Abstract Syntax Trees

An abstract syntax tree (AST) is a tree representation of a
language such that all operations are interior nodes and
all data are leaf nodes. As such, ASTs are frequently used
to represent programs.

An AST can be obtained from a derivation by a set of tree-
transformation rules. These rules are language-specific. 
See handout.

7

(λx.y)((λx.xx)(λx.xx))

Activity: Abstract Syntax Trees

Derive this expression, and then convert it to an AST.

8

Activity: Abstract Syntax Trees

Did you get this AST?

@

λ @

x y λ λ

@ @x x

x x x x

9

334-08-lecture_2024-02-27 - February 27, 2024

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:
@

λ …

redex = application with abstraction as left child.

10

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

?

@

λ …

11 Is this a redex?

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x

@

λ …

12 No.

334-08-lecture_2024-02-27 - February 27, 2024

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x ?

@

λ …

13 How about this one?

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x x

@

λ …

14 No.

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x x

?

@

λ …

15 This one?

334-08-lecture_2024-02-27 - February 27, 2024

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x x

✓

@

λ …

16 Yes.

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x x

✓

?

@

λ …

17 This one?

@

λ @

x y λ λ

@ @x x

x x x x

Which reduction do I perform?

Redex:

x x

✓

✓

@

λ …

18 Yes. So we have two redexes available. Remember if there’s a redex, it
means that you can beta reduce.

334-08-lecture_2024-02-27 - February 27, 2024

(λx.y)((λx.xx)(λx.xx))

Reduction strategies

function argument

19 To see the same thing textually, here is the redex at the top of the last
diagram.

(λx.y)((λx.xx)(λx.xx))

Reduction strategies

function argument

20 And here’s the redex at the bottom of the last diagram.

Which reduction do I perform?

(λx.y)((λx.xx)(λx.xx))

function argument
(λx.y)((λx.xx)(λx.xx))

function argument

21 Which one should I pick?

334-08-lecture_2024-02-27 - February 27, 2024

Two well-known reduction orders

• Normal order
• Applicative order

22 There are two general strategies for picking. The normal order and the
applicative order.

Order (mostly) does not matter

If E → E1 and E → E2

then E1 →* N and E2 →* N
for some N

E

E1 E2

N confluence

Sometimes multiple reductions available
23 But it turns out that it doesn’t matter all that much (it sort of matters…

more later) which one you choose. The lambda calculus is confluent, so it
will (usually) work out OK.

Demonstration

(λx.y)((λx.xx)(λx.xx))

Normal order (“outermost leftmost”)
reduction

What does “outermost leftmost” mean?

24 The normal order is outermost leftmost. What does this mean? Find the
redex furthest up in the AST. If there’s a tie for furthest up, choose the
one on the left.

334-08-lecture_2024-02-27 - February 27, 2024

(λx.y)((λx.xx)(λx.xx))

(outermost leftmost)

@

λ @

x y λ λ

@ @x x

x x x x

redex

redex

not reducible

not reducible

What does “outermost leftmost” mean?

25 Here’s the outermost leftmost redex.

Demonstration

(λx.y)((λx.xx)(λx.xx))

Applicative order (“innermost leftmost”)
reduction

What does “innermost leftmost” mean?

26 The applicative order is innermost leftmost. What does this mean? Find
the redex furthest down in the AST. If there’s a tie for furthest down,
choose the one on the left.

(λx.y)((λx.xx)(λx.xx))

(innermost leftmost)@

λ @

x y λ λ

@ @x x

x x x x

redex

redex

not reducible

not reducible

What does “innermost leftmost” mean?

27 Here is the innermost leftmost redex.

334-08-lecture_2024-02-27 - February 27, 2024

The only equivalent expressions in the lambda
calculus are those that are textually identical.

Meaning of "equivalence"

λa.aa ≠ λb.bb

λa.aa = λa.aa

after alpha reducing a for b:

28 Determining whether two lambda programs do the same thing is easy:
they have to have exactly the same text.

Although reduction order “does not matter”
(because the LC is confluent), only the normal
order reduction is guaranteed to terminate for

expressions that have a normal form.

One caveat about reduction orders

(see LC, part 2 from packet for more detail)

29 This is an annoying fact. Sometimes applicative order can get “stuck in a
loop.” You won’t derive anything untrue, but the reduction may not make
any progress.

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Normal order:

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Applicative order:

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Neither:

30 Here’s another expression. Try covering up the answers and see if you
can find the three redexes on your own.

334-08-lecture_2024-02-27 - February 27, 2024

Trouble matching parens? Try this.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2
1 2 3 3 2 2 3 4 4 3 2 1

31 If you’re having trouble doing these, try this trick. Number the parens so
that you can tell where parts of the expression start and end.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

More practice finding redexes
32 Here, I am going to generate an AST from the expression. I will highlight

the parts in red and blue as I write them down so that you can see how I
got them. Observe that I am not using a derivation tree to get the AST.
But if you are confused, go back to the derivation tree approach, then
derive the AST.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

More practice finding redexes
33

334-08-lecture_2024-02-27 - February 27, 2024

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

More practice finding redexes
34

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

More practice finding redexes
35

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

More practice finding redexes
36

334-08-lecture_2024-02-27 - February 27, 2024

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

More practice finding redexes
37

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

More practice finding redexes
38

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

More practice finding redexes
39

334-08-lecture_2024-02-27 - February 27, 2024

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

When I say normal order, I mean: “leftmost outermost” application

More practice finding redexes
40

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

When I say applicative order I mean: “leftmost innermost” application

More practice finding redexes
41

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

Here’s a third one! Neither normal nor applicative.

More practice finding redexes
42

334-08-lecture_2024-02-27 - February 27, 2024

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2 given

β reduce 2 for a((λz.(+ x z))((λz.(+ x z)) 2))

(λz.(+ x z))((λz.(+ x z)) 2)

α reduce b for z(λb.(+ x b))((λz.(+ x z)) 2)

eliminate parens

(λb.(+ x b))(((+ x 2))) β reduce 2 for z

(λb.(+ x b))((+ x 2)) eliminate parens

(λb.(+ x b))(+ x 2) eliminate parens

((+ x (+ x 2))) β reduce (+ x 2) for b

(+ x (+ x 2)) eliminate parens

done

Solution to activity

Note: x is a free variable; we cannot rename it
Note: I chose reductions arbitrarily (it’s really OK!)

43 Here is one possible reduction for this lambda expression. Others are
also valid.

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Normal order reduction:

Normal order is “outermost leftmost” first.

44 Try doing the normal order reduction for this expression. It looks similar to
the last one, but it is actually different.

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Applicative order reduction:

Applicative order is “innermost leftmost” first.

45 Try doing the applicative order reduction now.

I will post solutions to these on the course webpage.

334-08-lecture_2024-02-27 - February 27, 2024

Recap & Next Class

Today:

Next class:

More lambda reductions

Higher-order functions

46

334-08-lecture_2024-02-27 - February 27, 2024

