
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: Evaluation by Rewriting

1

Topics

Lambda calculus—how to evaluate it

Lambda calculus—how to parse it

2

Your to-dos

1. Read Introduction to the Lambda Calculus, Part
1, for Lab 3.

2. Lab 3, due Monday 2/26 (solo lab) 
Give yourself enough time to learn a small
amount of LATEX

3

334-07-lecture_2024-02-21 - February 22, 2024

Announcements

•CS Colloquium this Friday, Feb 23 @ 2:35pm in
Wege Auditorium (TCL 123)

How Big is YouTube?
Prof. Ethan Zuckerman (’93, UMass Amherst)
Social media and user-generated content have
thoroughly transformed the media landscape, giving
birth to powerful companies, transforming news and
political participation. Despite the influence of
platforms run by Google and Meta, it is difficult to
answer the simplest questions about these
technologies, like "How many videos are hosted on
YouTube?" Our lab has published a novel method for
estimating the size of YouTube and learning other
essential facts about the platform. In the process, we
have uncovered a set of legal and ethical questions
that will be essential for other "unpermissioned
research" about social media platforms.

4

No Quiz
So this is just an ungraded activity

5 See the solution posted online.

λ Syntax Refresher

6

334-07-lecture_2024-02-21 - February 22, 2024

Memorize This†

<expr> ::= <value>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ
 | <var>

†I rarely ask students to memorize things.

7 You should memorize this.

Let’s parse this together

xλy.a(xx)

8 See your classmates for the derivation tree.

Free vs bound variables

(λx.x)x

freebound

9 One very important aspect of the lambda calculus is whether a variable is
“free” or “bound.” This expression has two different x variables in it. Be
on the lookout for this distinction. The bound variable is the x that
appears within the lambda. The free x is the one outside the lambda.
They just happen to have the same name.

334-07-lecture_2024-02-21 - February 22, 2024

Evaluating λ expressions

10

Lambda calculus: relevance

Vector<Association<String,FrequencyList>> table =
new Vector<Association<String,FrequencyList>>();

let table = new Vector<>()

…

Fundamental technique for building programming
languages that work correctly (and intuitively!).

But it can also be leveraged to do some seemingly
magical things, like type inference:

Vector<Association<String,FrequencyList>> table = new Vector<>();

11 Why are we learning this? At its heart, the study of programming
languages is about how a language “desugars” into a core mathematical
idea. You do not need the lambda calculus to build a programming
language. However, unless you understand the relationship between your
language and the lambda calculus, certain kinds of insights about
programs will be difficult or impossible to obtain.

class Program {
 public static void hello() {
 println(“Hello world!”);
 }

 public static void main(…) {
 hello();
 }
}

Call stack

main

hello

Evaluation: You know how Java does it
12 Now, let’s talk about how a program is evaluated. You might have some

sense of how some languages are evaluated, like Java. C works
essentially the same way as Java in this regard.

334-07-lecture_2024-02-21 - February 22, 2024

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

13 However, the lambda calculus is different. It is more like algebra. You
evaluate by rewriting an expression with some kind of text substitution.

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

⟦λx.<expr>⟧ =α ⟦λy.[y/x]<expr>⟧

[y/x]<expr> means “substitute y for x in <expr>”

14 There are only two “evaluation rules” in the lambda calculus. We call
these rules “reductions.” The first is alpha reduction, which is used to
rename a variable in an expression.

α-Reduction

(λx.x)x given
(λy.[y/x]x)x α-reduce y for x (binding)
(λy.y)x α-reduce y with x (expr)

15 For example, we can alpha reduce the expression (λx.x)x to (λy.y)x. This
is OK because we’re just renaming a bound variable. Your intuition may
already tell you that this is OK! For example, you probably already know
that the following two Java programs are the same.

public static int id(int x) {

 return x;

}

334-07-lecture_2024-02-21 - February 22, 2024

public static int id(int y) {

 return y;

}

Note that in this class, you must write your reductions in two-column
format, just like you did in your high school geometry class.

Free vs bound variables

(λx.x)x

freebound

16 Note that there is a very important distinction between free and bound
variables. The inner (leftmost) x is defined by the abstraction. The outer
(rightmost) x is a TOTALLY DIFFERENT VARIABLE that happens to have
the same name. We do not know how it is defined in this expression, so
we must treat it with caution. We cannot rename a free variable, but we
can rename a bound one.

Watch out!

λx.xy given
λy.[y/x]xy α-reduce y for x
λy.yy inner α-reduction

The lambda has “captured” the free y.
Substitution must be capture-avoiding.

this is incorrect!

17 Be careful not to “capture” a variable when performing an alpha reduction.

334-07-lecture_2024-02-21 - February 22, 2024

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

Rule:

⟦(λx.<expr>)y⟧ =β ⟦[y/x]<expr>⟧

18 The second reduction rule is beta reduction, which has essentially the
same meaning as a “function call.” It passes an argument into a function
definition, discards the lambda, and then rewrites the body of the function
definition.

Let’s reduce this

(λx.x)x

19 For example, let’s reduce this expression. See your classmates for the
step-by-step reduction. The result is ultimately x.

Recap & Next Class

Today:

Next class:

Lambda calculus: how to parse

Lambda calculus: how to survive

Lambda calculus: how to evaluate

20

334-07-lecture_2024-02-21 - February 22, 2024

