
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: The Dream of Computation

1

Topics

Syntax in Backus-Naur Form

Lambda calculus

What can computers really do?

2

Your to-dos

1. Read Syntax, for Thursday 2/22.
2. Lab 3, due Monday 2/26 (solo lab) 

Give yourself enough time to learn a small
amount of LATEX

3

334-06-lecture_2024-02-20 - February 20, 2024

Announcements

•CS Colloquium this Friday, Feb 23 @ 2:35pm in
Wege Auditorium (TCL 123)

How Big is YouTube?
Prof. Ethan Zuckerman (’93, UMass Amherst)
Social media and user-generated content have
thoroughly transformed the media landscape, giving
birth to powerful companies, transforming news and
political participation. Despite the influence of
platforms run by Google and Meta, it is difficult to
answer the simplest questions about these
technologies, like "How many videos are hosted on
YouTube?" Our lab has published a novel method for
estimating the size of YouTube and learning other
essential facts about the platform. In the process, we
have uncovered a set of legal and ethical questions
that will be essential for other "unpermissioned
research" about social media platforms.

4

Class poll

•Two suggestions
•Extend deadline to midnight (OK)
•Return quizzes before deadline (solutions
instead)

5

Language of languages

6 Stepping up several levels, how do we talk about computer languages
without talking about a specific computer language? How can we talk
about them generally? It turns out that they all have some parts in
common.

334-06-lecture_2024-02-20 - February 20, 2024

The York Plays (late 15th century) comprise one of the
four complete surviving medieval play cycles
sometimes known as ‘mystery cycles’. They are a
series of short plays, known as ‘pageants’, which were
performed by members of different craft guilds (groups
of people practicing the same trade who formed a club)
at locations throughout the city of York. —British Library

7 Please read this for me. You can’t? Why not? It’s written in English!

Why couldn’t you understand the script?
It’s written in English, after all!

• Appearance: syntax
• What is the set of valid symbols?
• What arrangements of symbols are

permissible?
• Meaning: semantics

• What does a given arrangement of
symbols correspond mean?

We don’t know the “ground rules” for the
document as it is written:

8 Although this is technically “English,” it is unlikely that you would be able
to read it, as the rules of English have changed over time. For a language,
there are essentially two families of rules.

Formal language

A formal language is the set of permissible sentences
whose symbols are taken from an alphabet and whose
word order is determined by a specific set of rules.

English is not a formal language.

Java is a formal language.

Intuition: a language that can be defined mathematically,
using a grammar.

9 We’ve briefly discussed this before…

334-06-lecture_2024-02-20 - February 20, 2024

More formally
L(G) is the set of all sentences (a “language”) defined by
the grammar, G.

G = (N, Σ, P, S) where
N is a set of nonterminal symbols.
Σ is a set of terminal symbols.

P is a set of production rules of the form 
 N ::= (Σ⋃N)*
 where * means “zero or more” (Kleene star) and
 where ⋃ means set union
S∈N denotes the “start symbol.”

10 What really is a formal language? What’s the “form”? The form is G = (N,
sigma, P, S).

Backus-Naur Form (BNF)
More concretely, for programming languages, we

conventionally write G in a form called BNF.

John Backus Peter Naur
Invented in 1959 to describe the

ALGOL 60 programming language.

11 Although you could define a language using pure set theory, we prefer a
more convenient, but equivalent syntax: BNF. BNF was created to be
able to describe the syntax of any programming language, but it was
specifically developed when ALGOL was being designed.

Tower of Hanoi (ALGOL 60)
12 ALGOL looks a lot like a modern programming language! In fact, many

textbooks use ALGOL as a kind of algorithm pseudocode.

334-06-lecture_2024-02-20 - February 20, 2024

Backus-Naur Form (BNF)

Nonterminals, N, are in brackets: <expression>
Terminals, Σ, are “bare”: x
A production rule, P, consists of the ::= operator, a
nonterminal on the left hand side, and
a sequence of one or more symbols from N and Σ on the
right hand side.

<variable> ::= x

We use ε to denote the empty string.

The | symbol means “alternatively”: <num> ::= 1 | 2

13 How does BNF work? It works like this.

Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit>
 | <num><digit>

as

“num is defined as a digit or as a num followed by a
digit.”

14 Here’s a recursive snippet. Observe that this example allows us to
describe numbers of any length. The definition is not complete, however,
because it contains no terminals (but it would be OK if you defined <digit>
in terms of terminals).

Backus-Naur Form (BNF)

The following definition might look familiar:

<expr> ::= <num>
 | <expr> + <expr>
 | <expr> - <expr>
<num> ::= <digit>
 | <num><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9

Conventionally, we ignore whitespace, but if it matters,
use the ␣ symbol. E.g.,

<expr>␣+␣<expr>

<expr> is the start symbol.

15 Here’s a definition for a simple language that can add multi-digit numbers.
This is a complete definition.

334-06-lecture_2024-02-20 - February 20, 2024

Parsing and Parse Trees

Parsing is the process of analyzing a string of
symbols, conforming to the rules of a formal
grammar, to understand: 

1) whether that sentence is valid (s ∈ L(G)), or
2) the structure (e.g., “parts of speech”) of that

sentence (a parse tree).

16 So how do we “interpret” sentences? First, we need to derive their
structures using the rules of the grammar. This process is called
“parsing.”

Derivation Tree

1+2+3

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<e>

<e>+<e>

<e>+<e>

<d>

1 <d>

2

<d>

3

<n>

<n> <n>

Shows every step of how a sentence is parsed.

17 Given a BNF grammar and an expression in that language, we can trace
through the steps we use to recognize a valid expression. If you do that,
you get what is called a “derivation tree.”

What can computers really do?

18 Now that we have a basic idea of how we might describe syntax—which
is the subject of this week’s lab—we have some idea of how we might
formulate a language for communicating with a computer. So now let’s
discuss what we might talk to them about: what can and can’t computers
do, fundamentally?

334-06-lecture_2024-02-20 - February 20, 2024

The Dream

“I thought again about my early plan of a new
language or writing-system of reason, which
could serve as a communication tool for all
different nations... If we had such an universal
tool, we could discuss the problems of the
metaphysical or the questions of ethics in the
same way as the problems and questions of
mathematics or geometry. That was my aim:
Every misunderstanding should be nothing
more than a miscalculation (...), easily
corrected by the grammatical laws of that new
language. Thus, in the case of a controversial
discussion, two philosophers could sit down at
a table and just calculating, like two
mathematicians, they could say, 'Let us check
it up …’”

Wilhelm Gottfried Leibniz

19 One of the first people to wonder about this question was this bewigged
dude, the genius and polymath, Leibniz.

The Dream

Wilhelm Gottfried Leibniz

“stepped reckoner”

20 Leibniz actually attempted to build machines that realized his dream. He
started small, with a machine called the “stepped reckoner” that could
perform arithmetic: addition, subtraction, multiplication, and division. This
basic design was used (for real!) for more than 200 years!

“What is the answer to the ultimate
question of life, the universe, and

everything?

21 Anyone here a fan of Douglas Adams? In the Hitchhiker’s Guide to the
Galaxy, philosophers build a machine to answer essentially the same
question, but they phrase their question so imprecisely as to get
nonsense out of the machine. “garbage in, garbage out” This, of course,
was comedy, but anyone who has read Douglas Adams before knows that
there’s always something deep and interesting at the center of his jokes.

334-06-lecture_2024-02-20 - February 20, 2024

What is computable?

• Hilbert: Is there an algorithm

that can decide whether any
logical statement is valid?

• “Entscheidungsproblem” 

(literally “decision problem”)

• Leibniz thought so!

22 Over the years, though, what we mean when we ask “what can
computers do?” has gotten more precise. It’s true that the stepped
reckoner could only do arithmetic, but that does not mean that we could
not build a more powerful machine. Hilbert thought this was a very
important question: what’s the most powerful machine we could build?
His idea was to separate the idea of what a specific machine could do
from the idea of what machines could do in principle, and his was the first
precise use of the work “algorithm.” Hilbert thought that the “toughest”
problem was simply for a machine to state, for a given logical statement,
whether the statement was true or false.

What is computable?
• Why do we care?

• f(x) = x + 1

• We can clearly do this with  

pencil and paper.

• ∫ 6x dx

• Also computable, in a different manner.

• We care because the computable functions can

be done on a “computer.”

23 Many mathematical problems reduce to this formulation. For example,
clearly arithmetic has a form that we can say true/false things about. And
calculus does too, although the steps are maybe a little different. But we
care, because at their heart, proving things about them is similar, and we
can imagine that anything that is “computable” in this sense can be
computed on a machine.

334-06-lecture_2024-02-20 - February 20, 2024

Lambda calculus
• Invented by Alonzo Church in  

order to solve  

the Entscheidungsproblem.

• Short answer to Hilbert’s 

question: no.

• Proof: No algorithm can decide equivalence of

two arbitrary λ-calculus expressions.

• By implication: no algorithm can determine

whether an arbitrary logical statement is valid.

24 There’s some interesting history here about Gödel that I am going to gloss
over, but the first person to really take a stab at the problem in the way
that Hilbert meant was this guy, Alonzo Church. To do that, he invented a
little language that he thought captured everything important about
computation. That language was called the lambda calculus. The lambda
calculus is computational logic in its purest form. And Church showed
that there is no algorithm that can decide the equivalence of two lambda
calculus expressions. So in essence, no algorithm can determine whether
an arbitrary logical statement is valid. This was obviously very
disappointing to lots of people, but, as it turns out, the devil is in the
details. We can still do a lot with computers!

What is the meaning of x in algebra?

25 Let’s spend a little time investigating the lambda calculus. Remember:
this is a different system of logic. Let’s start simply by looking at
something that is familiar to you. In algebra, what does x mean?

334-06-lecture_2024-02-20 - February 20, 2024

Pro tip

Don’t try to “understand” the
lambda calculus.

Aside from “variable,” “function definition,” and
“application,” it has no inherent meaning.

We ascribe meaning to it, just as we do with algebra.

The lambda calculus is simply a system for
reasoning by using the logic of functions.

26 Many first-timers get hung up on details of the lambda calculus.
Remember: there is no inherent meaning in a lambda calculus expression.
What a given expression means depends on how you ascribe meaning to
it, just as with algebra.

Lambda calculus grammar

<expr> ::= <var>

 | <abs>

 | <app>

<var> ::= x

<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<expr> is the start symbol.

27 Here is the syntax of the lambda calculus, expressed in BNF.

What is a variable?

<var> ::= x

It’s just a value.

28 So what is a variable? It’s just a value. Which value? It does not really
matter, in the same way that the value of x does not really matter in
algebra.

334-06-lecture_2024-02-20 - February 20, 2024

What is an abstraction?

<abs> ::= λ<var>.<expr>

It’s a function definition

def foo(x):

 <expr>

29 What is abstraction? It’s a function definition.

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

argumentfunction

30 What is application? It’s a function call.

That’s it. That’s all of the lambda calculus.

Parsing Lambda Expressions

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

Let’s try parsing this expression

31 For now, though, let’s focus on derivation. What is the derivation for this
lambda calculus expression?

334-06-lecture_2024-02-20 - February 20, 2024

Ambiguity

You might have noticed that there is an
alternative parse tree.

λx.xx
<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

32 Note that BNF does not always capture every necessary detail. For
example, here is another potential derivation for the same expression.
However, this derivation is not correct because the lambda calculus DOES
include additional rules to eliminate ambiguity. These rules, called
precedence and associativity, are the most difficult rules for newcomers.

Abiguity

In fact, the lambda calculus is never
ambiguous because of its precedence and
associativity rules—see the reading.

33

Parentheses disambiguate grammar

Axiom of equivalence for parens

<expr> = (<expr>)

Let’s modify our grammar

34 Parens make precedence and associativity rules strictly unnecessary
(assuming that parens have the highest precedence). We will keep the
precedence and associativity rules for the lambda calculus, but if you
want to use parens to help you understand an expression, feel free to
insert them.

334-06-lecture_2024-02-20 - February 20, 2024

Lambda calculus grammar

<expr> ::= <var>

 | <abs>

 | <app>

 | <parens>

<var> ::= x

<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

35

While we’re at it…

<expr> ::= <var>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

36 Also, it is very helpful to have variables other than x.

Also…

<expr> ::= <value>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ
 | <var>

37 Finally, we will sometimes add arbitrary literal values to the lambda
calculus. These are not strictly necessary, but they make working with the
language a little easier.

334-06-lecture_2024-02-20 - February 20, 2024

This expression is now unambiguous

(λx.x)x

<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

<parens>

38 With parens, our original expression is unambiguous. It’s this parse.

Abstract Syntax Tree

+
1

2 3
+

Ignores derivation details; only essential structure

1+2+3

In an AST, internal nodes are
operations, leaves are data.

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

39 Later on in this semester, we will ignore tiny details in derivation and focus
on a more meaningful version of a parse tree, called an “abstract syntax
tree.” ASTs better get at what a given expression means.

Abstract syntax tree

(λx.x)x

<application>

<abstraction>

<variable> <variable>

x x

<variable>

x

40 Eventually, you will see that the abstract syntax tree tends to be more
useful than derivation trees, so we often favor parse trees in this form.

334-06-lecture_2024-02-20 - February 20, 2024

Recap & Next Class

Today:

Next class:

BNF

Lambda calculus / computation

More on lambda calculus

41

334-06-lecture_2024-02-20 - February 20, 2024

