
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 5: Algebraic Data Types

1

Announcements

•No announcements.

2

Topics

Avoiding errors
Algebraic data types

3

334-05-lecture_2024-02-15 - February 16, 2024

Your to-dos

1. Lab 2, due Monday 2/19 by 10pm (partner lab).
2. Read Syntax and Introduction to the Lambda

Calculus, Part 1 by next Thursday, 2/22.

4

Pattern matching
let rec product nums =

 if (nums = []) then

 1

 else

 (List.head nums)

 * product (List.tail nums)

let rec product nums =

 match nums with

 | [] -> 1

 | x::xs -> x * product xs

Using patterns…

5 The pattern in the code below has two cases. Either the list is empty or is is not. If it is empty, return one. If it is not, deconstruct the list
in a head and a tail, then multiply the head by the product of the tail.

• Remember, a list is one of two things:
– []

– <first elem> :: <rest of elems>

– E.g., [1; 2; 3] = 1::[2;3] = 1::2::[3] 
= 1::2::3::[]

• Can define function by cases…

Pattern matching on lists

let rec length xs =

 match xs with

 | [] -> 0

 | x::xs -> 1 + length xs

6

334-05-lecture_2024-02-15 - February 16, 2024

Quiz

7

Algebraic Data Types*

*not to be confused with Abstract Data Types!

8

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

9

334-05-lecture_2024-02-15 - February 16, 2024

• Invented by Rod Burstall at
University of Edinburgh in ‘70s.

• Part of the HOPE programming
language.

• Not useful without pattern matching.
• Like peanut butter and chocolate,

they are “better together.”

Algebraic Data Types
10

11 In case you’ve never heard the “better together” reference, he’s some pop
culture trivia.

A “move” function in a game

north

south

eastwest

12 Suppose we want to model moving a character in one of four directions.

334-05-lecture_2024-02-15 - February 16, 2024

public static final int NORTH = 1;

public static final int SOUTH = 2;

public static final int EAST = 3;

public static final int WEST = 4;

A “move” function in a game (Java)

public … move(int x, int y, int dir) {

 switch (dir) {

 case NORTH: ...

 case ...

 }

}

13 We might do it like this in Java. It works, but it sure is a lot of typing!

type Direction =  
 North | South | East | West;

let move coords dir =

 match coords,dir with

 |(x,y),North -> (x,y - 1)

 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (Java)
Discriminated Union (sum type)

14 We can do it much more concisely in F# using patterns. Importantly, F# will tell you when you’ve missed a case.

• Pattern match to extract parameters

type Shape =

 | Rectangle of float * float

 | Circle of float

let s = Rectangle(1.0,4.0)

match s with

| Rectangle(w,h) -> …

| Circle(r) -> …

Parameters
15 So, stepping back a little, an algebraic data type is a way of defining a piece of data by cases. The key thing to observe is that the type

here is Shape. However, a shape can have cases. The names of those cases are constructors for each kind of Shape. When we match
a Shape in a pattern, we can deconstruct each case into its component values.

334-05-lecture_2024-02-15 - February 16, 2024

• Names are really only useful for initialization, though.

let s = Rectangle(height = 1.0, width = 4.0)

Named parameters

type Shape =

 | Rectangle of width: float * height: float

 | Circle of radius: float

16 You can also name the pieces of each case, which helps with initialization.

type MyList<'a> =

 | Empty

 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;

 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic
17 You can also make an ADT recursive, and you can also make it generic. Recall that a linked list is both recursive and generic.

Avoiding errors

Exploding programs is no fun.

Validate input so that users don’t get hit by shrapnel.

18 I’m going to discuss two approaches.

334-05-lecture_2024-02-15 - February 16, 2024

let divide quot div = quot/div

A function that throws an exception
19 Here’s a toy example of a function that can fail (with an exception).

Although the failure mode of this function may seem obvious for this
example, in general, it is often hard to see which inputs may cause a
function to fail, especially if you did not write the function.

I am choosing a function that does integer division here because floating
point divide by zero is infinity (not an exception).

> divide 14 7;;

val it : int = 2

> divide 6 0;;

System.DivideByZeroException: Attempted to
divide by zero. 
… 
Stopped due to error

A function that throws an exception
20 In case it wasn’t clear, here’s the function failing.

• F# has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with ADTs

type option<‘a> =

| None

| Some of 'a

21

334-05-lecture_2024-02-15 - February 16, 2024

let divide quot div =

 match div with

 | 0 -> None

 | _ -> Some (quot/div)

Avoiding errors with ADTs
22 For example.

> divide 14 7;;

val it : int option = Some 2

> divide 6 0;;

val it : int option = None

>

Avoiding errors with ADTs
23 Think of the Some case as the number 2 being inside a box of type

Option. When that box is labeled “Some” there is something inside it.
When it is labeled “None” there is nothing inside it.

• Why option?

• option is a data type; 

not handling errors is a static type error!

• In other words, the user of our divide function

must handle the error.

Option type
24 So why is this a good idea? In short, it forces the user of the function to

acknowledge the failure mode of the program, and to write program logic
to handle it. Failing to handle the error is a type error, which means that
their program will not compile. Now, we cannot guarantee that the user
does the “right thing” with the failure, but at least we can guarantee that
they must do something. Moreover, we make the user’s life easier
because they do not need to understand the domain of the function
deeply— they just need to think of a corrective action.

334-05-lecture_2024-02-15 - February 16, 2024

let divide quot div =

 match div with

 | 0 -> None

 | _ -> Some (quot/div)

[<EntryPoint>]

let main args =

 let quot = int args[0]

 let divisor = int args[1]

 let result = divide quot divisor

 match result with

 | Some z -> printfn "Oh good: %d” z

 | None -> printfn "Bad numbers!”

 0

Option type
25 Here is a complete example, with a main method. Try it yourself!

Exceptions

26 Of course, F# also has exceptions.

let divide quot div = quot/div

We could have used exception, right?
27 This function naturally uses exceptions, since integer division by zero is

undefined and throws a floating point exception.

334-05-lecture_2024-02-15 - February 16, 2024

let divide quot div = quot/div

[<EntryPoint>]

let main args =

 let quot = int args[0]

 let divisor = int args[1]

 try

 let dividend = divide quot divisor

 printfn "%d" dividend

 0

 with

 | :? System.DivideByZeroException ->

 printfn "No way, dude!"

 1

Exception handling 28 Here’s a complete example. Observe that the burden is shifted entirely to
the user of the divide function. Also, F# does not force users to handle
exceptions, so if they do not actively anticipate errors, they are likely to
miss the fact that they need to do this. Still, it is a simple mechanism and
can work reliably when the domain is communicated clearly to the user of
the function (e.g., through comments).

• When do I use each one?

‣ option prevents errors at compile time.

‣ Exceptions prevent errors at runtime.

Option vs Exceptions
29 Why might you want to use option vs exceptions? The question comes

down to when you want errors in program logic handled. Option ensures
that logic errors are handled at compile time. Exception handlers ensure
that logic errors are handled at runtime. I have a personal preference for
the former because I think coding is hard and that we need all the help
that we can get.

Quiz solution using option and when

let rec get_nth xs n =

 match xs with

 | z::zs when n = 1 -> Some z

 | z::zs when n > 1 -> get_nth zs (n - 1)

 | _ -> None

30 We can use Option and “when” syntax in our patterns to make our quiz
solution pretty.

334-05-lecture_2024-02-15 - February 16, 2024

Recap & Next Class

Today:

Next class:
PL foundations

Option vs exceptions
More pattern matching

31

334-05-lecture_2024-02-15 - February 16, 2024

