
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: ML, part 2

1

Topics

Combining forms

Pattern matching

2

Your to-dos

1. Read Advanced F# by Thursday.
2. Lab 2, due Monday 2/19 by 10pm (partner lab).

3

334-04-lecture_2024-02-13 - February 13, 2024

Announcements

•Midterm exam dates:
•Thursday, March 14
•Thursday, May 2

4

Free your mind

5

Freeing your mind is difficult 6 Remember how I asked you to “be like Neo” and free your mind? Freeing
your mind is difficult. If you found the last assignment to be a bit of a
challenge, that’s OK. Even Neo tanked it the first time. But keep at it.

334-04-lecture_2024-02-13 - February 13, 2024

Combining forms

7 You can’t just make a language out of primitives. How are they
combined? We call the operations that “combine” values the “combining
forms” of a language.

Functions

> let foo a b c = a;;

>

val foo: a: 'a -> b: 'b -> c: 'c -> 'a

> foo 1 2 3;;

val it: int = 1

>

>

8 The most obvious and useful combining form is a function. Here I am
defining a function and then calling it. Try not to get thrown by the syntax.

Tuples

> ("a", 1, 4.4);;

>

val it: string * int * float = ("a", 1, 4.4)

> let baz (a: string, b: int, c: float) = (a,b,c);;

val baz: a: string * b: int * c: float -> string * int *
float

>

>

9 Here’s another, tuples. If you learned Python, you may have used tuples
before and wondered why other languages don’t have them. I wonder
that too. Tuples are great and F# has them.

334-04-lecture_2024-02-13 - February 13, 2024

Records

> type Point = { x: int; y: int; z: int };;>

type Point =

 {

 x: int

 y: int

 z: int

 }

>> let p = { x = 1; y = 2; z = 3 };;

val p: Point = { x = 1

 y = 2

 z = 3 }

>> let up pt = { x = pt.x; y = pt.y + 1; z = pt.z };;

>> up p;;

val up: pt: Point -> Point

val it: Point = { x = 1

 y = 3

 z = 3 }

10 We can also make sophisticated objects with named fields as in Java.
The customary way to do this in F# is by using something called a
Record. They’re like classes in Java except that we do not attach
methods to them. Or, more accurately, they’re like structs in C. If you
don’t know Java or C don’t sweat it. They’re just containers for data.

Lists

11 Lists are of fundamental importance in computer science, and the first
functional programming language, LISP, was entirely constructed around
the idea of list processing. We use lists (specifically, singly linked lists)
frequently in F#, and so it has special syntax that make working with them
easy.

Linked List

A linked list is a recursive data structure.

A list is either:

• the empty list, or
• a node, containing an element and a reference to a list.

12

334-04-lecture_2024-02-13 - February 13, 2024

Linked List

The empty list is defined as nil (or [])

13 I draw nil here as a special 0 thing, called “nil”. Note that F# does not use
the “null” value for lists. Note that the empty or nil list has no parts.

Linked List

Every other list has at least one list node.

14 Every other list has parts. The data structure shown here technically is
not a list, because the pointer needs to point at something. This is just a
list node.

Linked List

23

The last node in the list always points to nil.

15 This is a well-formed list. A well-formed list must eventually point at nil,
because a list is a recursive data structure, and well-formed recursive
data structures must exercise their base cases.

334-04-lecture_2024-02-13 - February 13, 2024

Linked List

A list has parts.*

234

head tail

*we do not use this definition in 334

16 You probably learned this definition of a list in CS136. I know, because I
teach CS136, and also because I fight with other CS department
members about the right definitions. (fighting about data structure
terminology is what CS profs do for fun)

Linked List

A list has parts.

234

head

tail

17 But you should know that this definition is much more common in
functional programming.

18 I asked DALL-E for a picture of a cat’s head with a cat’s tail coming
directly out of it but with no body, but this was the best it could do.

334-04-lecture_2024-02-13 - February 13, 2024

Linked List

A linked list is a recursive data structure.

A list is either:

• the empty list, or
• a node, containing a head and a tail.

19 Here I restate our definition of a list to use our words head and tail. This
has the same meaning as the previous definition slide.

• Examples
– [] is the empty list
– [1; 2; 3; 4], [“wombat"; "dingbat"]
– all elements of list must be same type

• Operations
– length	 	 List.length [1;2;3] ⇒ 3

– cons	 1::[2;3] ⇒ [1; 2; 3]

– head List.head [1;2;3] ⇒ 1

– tail List.tail [1;2;3] ⇒ [2;3]

– append	 [1;2]@[3;4] ⇒ [1; 2; 3; 4]

– map	 List.map succ [1;2;3] ⇒ [2;3;4]

Lists
20 Some examples of using lists.

• 1::2::[] : int list 
“wombat”::"numbat"::[] : string list

• What type of list is []?
- [];

val it : 'a list

• Polymorphic type
– 'a is a type variable that represents any type
– 1::[] : int list

– “a”::[] : string list

List types
21 Note that lists in F# are statically typed.

334-04-lecture_2024-02-13 - February 13, 2024

• Note that recursive functions must use rec keyword.
• Not valid: 
let fact n = 
 if n <= 0 then 
 1 
 else 
 n * fact (n - 1)

• Instead: 
let rec fact n = 
 if n <= 0 then 
 1 
 else 
 n * fact (n - 1)

Recursive functions
22 F# has support for recursive functions but you must use the rec keyword.

Pattern Matching

23 Here’s the first feature that is likely VERY different from something you’ve
seen before. Once you get used to this feature, you will miss it in other
languages. In fact, some non-functional languages have started to
incorporate this feature, like TypeScript.

Pattern matching
let rec product nums =

 if (nums = []) then

 1

 else

 (List.head nums)

 * product (List.tail nums)

let rec product nums =

 match nums with

 | [] -> 1

 | x::xs -> x * product xs

Using patterns…

24 Suppose somebody asks you to write a program in F# to multiply together
all the elements of a list. Since we don’t have loops, we will need to use
recursion. Remember how recursion works: we need a base case and a
recursive case. The base case is to return 1 so that our multiplication
problem is grounded. Then we multiple each element one at a time in the
recursive case. To do so, we need to remove the head of the list and
multiply it by the product of the rest of the list. However, there is a much
cleaner way to express this problem using patterns. I’ll explain the

334-04-lecture_2024-02-13 - February 13, 2024

difference in a minute, but first, just appreciate how much nicer this looks.

A pattern is built from

•values,

• (de)constructors,

•and variables

Tests whether values match “pattern”

If yes, values bound to variables in pattern

Pattern matching
25 A pattern is made from values, deconstructors, and variables. A

deconstructor is like a constructor, but the inverse. When the value of a
variable matches a pattern, we can deconstruct its values and execute a
line of code.

Recap & Next Class

Today:

Next class:
Algebraic data types
Option type

Pattern matching

26

334-04-lecture_2024-02-13 - February 13, 2024

