
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 3: ML

1

Topics

ML family of languages

F#

2

Your to-dos

1. Lab 1, due Monday 2/12 (partner lab) 
Don’t forget about maximizing pushchecks!

2. Maybe start on next week’s readings?

3

334-03-lecture_2024-02-08 - February 8, 2024

Announcements
•CS Colloquium today @ 11:45pm in Wege
Auditorium (TCL 123)

Laura South (Northeastern University)

Making Social Digital Platforms Accessible for
People with Photosensitive Epilepsy
Participating in social digital spaces can be dangerous for
people with photosensitive epilepsy (PSE), as they risk
encountering flashing or strobing content in these social spaces
that are capable of triggering seizures. Given the severe
medical consequences of seizures, it is fundamental that digital
platforms have protective systems in place to control the spread
of content with hazardous strobing or flashing light sequences.
However, identifying and handling seizure-inducing content on
digital platforms is a challenging problem due to variability in
the source and behavior of strobing sequences, as well as
differences in sensitivity among people who have PSE. In this
talk, I will describe my work on building theory for ensuring
photosensitive accessibility in social online spaces, developing
prototype systems for identifying and blocking seizure-inducing
content, and conducting interviews with people with PSE to
better understand accessibility needs.

4

Announcements

•Another colloquium this Friday, Feb 9 
in Wege Auditorium at 2:35pm. 
Senior Thesis Proposals, Part 2  

Ye Shu Yufeng Wu Alex Atherton Friedrich Qiu

5

Announcements
•Reminder: where to find TA and office hours

6

334-03-lecture_2024-02-08 - February 8, 2024

Announcements

•Other information
•Quiz readings
•Mentor meeting form

7

Quiz

8 Today we are going to talk about a family of programming languages,
called “ML.” Note that this is a different “ML” than the term that refers to
machine learning.

ML

9 Today we are going to talk about a family of programming languages,
called “ML.” Note that this is a different “ML” than the term that refers to
machine learning.

334-03-lecture_2024-02-08 - February 8, 2024

“Free your mind”
10 Before we start, I want you to free your mind. Learning ML requires you to

do some mind bending things sometimes. Be prepared not to get it right
the first time. Be like Neo.

1960

1970

1980

1990

2000

2010

LISP
1950

ML

Standard ML Caml
OCaml

Miranda
Haskell

F#

Java

C#

ML
11 We now think of ML as a family of languages, but originally there was just

one. It was strongly influenced by LISP, which we will also touch on this
semester. But many others were inspired by ML, and created new
languages that added many new features. We will primarily spend our
time learning F#, which is most directly influenced by Haskell, OCaml, and
C#. I really love F#, and I hope you enjoy it too.

ML
• Dana Scott

• Logic of Computable Functions

• Can we automate proofs?

• Yes. Theorem proving is

essentially a “search problem”!

• But proof search is “hard.” 

Many problems are NP-

Complete.

• Works “in practice” with the

right “tactics”

12 So where did ML come from? It was not born in a vacuum. Like many
languages, it was created to solve a specific problem: can we write
computer programs that automatically prove (mathy) things for us?

334-03-lecture_2024-02-08 - February 8, 2024

ML
• Robin Milner

• How to program tactics?

• A “meta language” is needed

• ML is born (1973)

• First impression upon

encountering a computer:

"Programming was not a very

beautiful thing. I resolved I

would never go near a

computer in my life."

13 ML stands for “meta language.” Proofs, when automated, are themselves
programs. So if you are generating proofs, you are generating programs,
which is “meta.”

F#

• Don Syme

• ML is “more fun” than Java or C#.

• Can we use ML instead?

• F# is born (2010).

14 F# is a modern reinvention of ML for the .NET runtime produced by
Microsoft. Unlike ML, it can be used with pre-existing codebases written
in C# (e.g., many video games).

F# REPL

$ dotnet fsi

Microsoft (R) F# Interactive version 12.8.0.0 for F# 8.0

Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

Type #quit;; to quit.

15 F# has an interactive command-line environment called a REPL (read-
eval-print-loop). I strongly encourage you to get comfortable playing with
with F# REPL. It will save you a lot of time and it will make
experimentation be easy and fun.

334-03-lecture_2024-02-08 - February 8, 2024

Logical operators

16 Let’s start with a few operations that trip people up when they first begin:
logical operations.

Logical operators

operation syntax

and &&

not not

equals =

not equals <>

inequalities <, >, <=, >=

or ||

17 These work the same way as logical operators in other languages, except
that they look different. Also, secretly, operators are just functions, as
they should be.

unit

18 Because in F# everything is an expression, we need a way to express the
idea that a function may return nothing. For that, we have a special value
called “unit.”

334-03-lecture_2024-02-08 - February 8, 2024

unit datatype

public static void main(String[] args) { … }

let main args = …

19 Recall that the main function in Java returns nothing. How do we express
the same concept in F# if all expressions must return something?

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) = …

Remember: every expression must return a value.
A function can’t return nothing.

20

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) : unit = …

Therefore, “nothing” is a thing… called unit.

21 Short answer: make a nothing a something.

334-03-lecture_2024-02-08 - February 8, 2024

unit datatype
$

How does one obtain a value of unit?

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5

Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

 unit;;

 ^^^^

stdin(1,1): error FS0039: The value or constructor 'unit' is
not defined.

>
val it : unit = ()

>

$ dotnet fsi

> unit;;

> ();;

()

22 Note that there is a difference between the type unit and the one value of
unit, (). You already know the distinction between types and their values.
E.g., 4 is an int, and “hello” is a string. () is a unit, but unlike int and string,
there is only a single valid value for unit.

val it : unit = ()

>

> ignore (foo());;

val it : int = 2

>

val foo : unit -> int

>

You can also ignore…
> let foo() = 2;;
>

> foo();;

val it : unit = ()

>

> foo() |> ignore;;

“forward pipe” operator
<expr> |> <expr>

foo() |> ignore

23 Another function called “ignore” allows you to “throw away” a value
returned by a function. It replaces that value with unit. I am also showing
my favorite F# operator here, which is called “forward pipe.” If you’ve
ever used pipes in the unix shell, forward pipe should be familiar.

By the way…

let main(args: string[]) : unit = …

24 I used this example before, but…

334-03-lecture_2024-02-08 - February 8, 2024

By the way…

let main(args: string[]) : int = …

25 … to be more precise, F# requires that main methods return int. That
integer signals to the OS whether the program succeeded or failed. 0
means success, nonzero means fail. Programs can define any number
between 1-255 to have a specific error reason.

Primitives

26 Recall from your previous semesters of computer programming that we
usually start by talking about the the kinds of data. Actually, we really do
this because we want to start with the indivisible, most basic parts of the
language, and for most languages, that happens to be kinds of data.
More generally, though, any fundamental concept can be a kind of
primitive in a language.

† actually defined by the CLR

Primitives

bool

byte

int

single

double

char

unit

sbyte

int16

uint16

uint

int64

uint64

nativeint

unativeint

decimal

27 F# inherits its primitive data types from C#, since they are designed to
interoperate.

334-03-lecture_2024-02-08 - February 8, 2024

Recap & Next Class

Today:

Next class:
More F#

History of ML
F#

28

334-03-lecture_2024-02-08 - February 8, 2024

