
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 2: What is a language anyway?

1

Topics

What is a language?

Turing equivalence

WCMA activity

2

Your to-dos

1. Read A Slightly Longer Introduction to F#
2. Lab 1, due Monday 2/12 (partner lab) 

Be sure to tell me who your partner is in
collaborators.txt file.

3

334-02-lecture_2024-02-06.key - February 8, 2024

Announcements

•Colloquium this Friday, Feb 9 
in Wege Auditorium at 2:35pm. 
Senior Thesis Proposals, Part 2  

4

What is a program?

5 What makes a program a program? You might start by thinking about
what you might see as output when you run a program repeatedly. Is it
different every time or the same?

6 Here are all the interpretations you sent me. Although there is some
variation, they are surprisingly similar.

334-02-lecture_2024-02-06.key - February 8, 2024

7 It’s “supposed” to look like the image on the right. We were pretty close.
So are the instructions I gave you in the homework a “program”? In a
way, yes, because we all produced something similar. In another way,
definitely not, because none of our outputs looked exactly like this.

(By the way, you can go view the original at MassMoCA.)

What is a language?
In this class, we concern ourselves with a specific
formulation of “language,” called a formal language.

A formal language is the set of words whose letters
are taken from some alphabet and whose construction
follows some rules.

Example:

L = {a, aa, b, bb, ab, ba}

Σ = {a, b}

<expr> ::= <letter> | <letter><letter> 
<letter> ::= a | b

8 L is the language: the set of all words.

Sigma is the set of symbols that comprise those words. Note that L can
be very large. For English, L is infinite! But alphabets are usually finite. In
fact, they are usually small.

The funny looking lines at the bottom are an example of the rules of a
language, called a grammar. This grammar is written in Backus-Naur
Form. We will revisit this formalism throughout the semester.

Interesting fact: 
language = machine

<expr> ::= <letter> | <letter><letter> 
<letter> ::= a | b

a

b

a

b

The above is a machine called a
deterministic finite state automaton (DFA)

that “accepts” only words ∈ L.
The two definitions above describe the

same language, but precisely.

9 Backus-Naur Form and finite state automata are equivalent, so you can
draw them either way. For a fun example of a kind of visualization, look
up Niklaus Wirth’s “syntax diagrams”, sometimes called “railroad
drawings.” Importantly, both formalisms describe the fact that generating
a sentence or checking that a sentence belongs to a language is a
process, and processes can be done by machines.

334-02-lecture_2024-02-06.key - February 8, 2024

What is a programming language?

A programming language is defined by two machines:
1. A syntax machine that determines the set of

strings that are in the language.
2. A semantics machine that determines what gets

done (i.e., what computational work) with an
accepted string.

We spend a lot of time in PL
thinking about these machines,

which we call language models.

10

Turing machine

current cell

0

tape

……

current state

A

configuration behavior

0 0 0 000

11 Here is one standard language model: the Turing machine. Its operation is
very simple. See if you can determine its next steps using the table
below.

Turing machine

current cell

1

tape

……

current state

A

configuration behavior

0 0 0 000

12 When in state A and current symbol 0, we write a 1 to the tape, then…

334-02-lecture_2024-02-06.key - February 8, 2024

Turing machine

current cell

0

tape

……

current state

A

configuration behavior

0 1 0 000

13 … move the tape to the right …

Turing machine

current cell

0

tape

……

current state

B

configuration behavior

0 1 0 000

14 … and then update the current state to B.

Turing machine

current cell

1

tape

……

current state

B

configuration behavior

0 1 0 000

15 Next, with B in the current state with 0 in the current cell, we write a 1 and
…

334-02-lecture_2024-02-06.key - February 8, 2024

Turing machine

current cell

1

tape

……

current state

B

configuration behavior

1 0 0 000

16 … move the tape to the left …

Turing machine

current cell

1

tape

……

current state

A

configuration behavior

1 0 0 000

17 … and update the current state to A. And so on until the machine halts
(“H”).

Turing machine

current cell

1

tape

……

current state

A

1 0 0 000

18 Here is the table Turing shows from his seminal paper, “On Computable
Numbers, with an Application to the Entscheidungsproblem”

334-02-lecture_2024-02-06.key - February 8, 2024

Surprising fact!

Almost all general purpose programming languages are
equivalent in computational power to a Turing machine.

19 Believe it or not, this very simple machine is universal in the sense that all
known computations can be performed on it (albeit inconveniently). That
makes it good for studying lots of questions about computation. For
example, in the Turing machine model, determining the cost of an
algorithm is simple: assume each instruction is unit cost and count the
number of instructions executed.

Domain specific languages

A domain-specific language (DSL) is a computer
language specialized to a particular application domain.
DSLs are intentionally not Turing equivalent, for
simplicity.

graph {

 a -- b;

 b -- c;

 a -- c;

 d -- c;

 e -- c;

 e -- a;

}

20 But there are other models, and we don’t need to use something as
powerful as a Turing machine. For example, if all you want to do is to
draw a graph, you might use graphViz, which is a declarative language for
drawing a graph. There is a 1-to-1 correspondence between the program
on the left and the image on the right. Easy to understand, and is
purpose-built to draws graphs easily, but if you want to do something
more sophisticated, you’ll need to use a different language.

Keep in mind: two machines

21

334-02-lecture_2024-02-06.key - February 8, 2024

Activity

22 Do the activity in the handout. The idea is to *describe* what you see, not
to *interpret* it. Describe what you’re looking at in terms a computer can
understand. We like to start this activity with the Sol LeWitt wall drawing
in the entrance of WCMA.

Recap & Next Class

Today we covered:

Next class:
F#

WCMA

23

334-02-lecture_2024-02-06.key - February 8, 2024

