
Quiz 8
CSCI 334: Spring 2024

Your name:

A MOVELANG program computes a final location after a sequence of moves starting from location { x = 0; y = 0 }.
Going north (N) subtracts 1 from the current y while going south (S) adds 1.

A MOVELANG program has the following grammar:

<expr> ::= <move>*
<move> ::= N | S

For example, NNNS returns { x = 0; y = -2 }.

A complete MOVELANG implementation is below.

type Location = { x: int; y: int }

type Move = North | South

let move = (pchar ’N’ |>> (fun _ -> North)) <|>
(pchar ’S’ |>> (fun _ -> South))

let grammar = pleft (pmany0 move) peof

let parse (input: string) : Option<Move list> =
match grammar (prepare input) with
| Success (ast,_) -> Some ast
| Failure (_,_) -> None

let evalMove (loc: Location)(move: Move) : Location =
match move with
| North -> { x = loc.x; y = loc.y - 1 }
| South -> { x = loc.x; y = loc.y + 1 }

let rec eval (loc: Location)(moves: Move list) : Location =
match moves with
| [] -> loc
| p::ps ->

let loc’ = evalMove loc p
eval loc’ ps

[<EntryPoint>]
let main (args: string[]) : int =

let loc = { x = 0; y = 0 }
match parse args[0] with
| Some moves ->

let loc2 = eval loc moves
printfn "Final location: (%d, %d)" loc2.x loc2.y
0

| None ->
printfn "Invalid program"
1

Suppose the specification of MOVELANG is updated to the following. Solution highlighted in red below.

A MOVELANG program computes a final location after a sequence of moves starting from location { x = 0; y = 0 }.
Going north (N) subtracts 1 from the current y while going south (S) adds 1. Going west (W) subtracts 1 from the current
x while going east (E) adds 1.

A MOVELANG program has the following grammar:

<expr> ::= <move>*
<move> ::= N | S | E | W

For example, NNNSWW returns { x = -2; y = -2 }.

type Location = x: int; y: int

type Move = North | South | East | West

let move = (pchar ’N’ |>> (fun _ -> North)) <|>
(pchar ’S’ |>> (fun _ -> South)) <|>
(pchar ’E’ |>> (fun _ -> East)) <|>
(pchar ’W’ |>> (fun _ -> West))

let grammar = pleft (pmany0 move) peof

let parse (input: string) : Option<Move list> =
match grammar (prepare input) with
| Success (ast,_) -> Some ast
| Failure (_,_) -> None

let evalMove (loc: Location)(move: Move) : Location =
match move with
| North -> { x = loc.x ; y = loc.y - 1 }
| South -> { x = loc.x ; y = loc.y + 1 }
| East -> { x = loc.x + 1; y = loc.y }
| West -> { x = loc.x - 1; y = loc.y }

let rec eval (loc: Location)(moves: Move list) : Location =
match moves with
| [] -> loc
| p::ps ->

let loc’ = evalMove loc p
eval loc’ ps

[<EntryPoint>]
let main (args: string[]) : int =

let loc = { x = 0; y = 0 }
match parse args[0] with
| Some moves ->

let loc2 = eval loc moves
printfn "Final location: (%d, %d)" loc2.x loc2.y
0

| None ->
printfn "Invalid program"
1

