
Quiz 6
CSCI 334: Spring 2024

Your name:

The Equiv function is defined as follows.

Equiv(p1, p2) =

{
true if p1 and p2 compute the same output on all possible inputs.
false otherwise

where p1 and p2 are functions of the form

def MyFunc(x):
...

We are going to prove by reduction that Equiv is not computable. I need your help checking my proof.

1. What’s the one fact we should assume in this proof? (hint: what function can we assume we have
in our standard library)

That the Equiv function exists and is computable.

2. Name a function already known not to be computable.

The Halt function.



3. Here’s my reduction function.

def Halt(p,x):
p1 = "def MyFunc1(y):\n" +

" " + p + "\n" +
" MyFunc(" + x + ")\n" +
" return 1"

p2 = "def MyFunc2(y):\n" +
" return 1"

return Equiv(p1, p2)

(a) Suppose the p we call Halt with is:

def MyFunc(x):
x = 0
while (true):

x += 1
return x

and suppose x is 2. What is the value of p1 in Halt?

def MyFunc1(y):
def MyFunc(x):

x = 0
while (true):

x += 1
return x

MyFunc(2)
return 1

You can think of p1 as a “gadget” that makes p (whatever it is) return the same thing as
MyFunc2 (i.e., 1) if and only if p halts.

(b) Is the reduction correct? Why or why not? Explicitly consider what happens when a given p
halts and when it does not.

Yes, the reduction is correct.

If p halts, then p1 will also halt and return 1. Observe that p1 will always return 1, no
matter the input y, because we ignore y and always run it on x. Since p2 always returns 1
for every input (it is a constant function), Equiv(p1,p2) returns true whenever p halts.

If p does not halt, then p1 will also not halt. In fact, p1 does not halt, no matter the input
y. In this case, Equiv(p1,p2) returns false whenever p does not halt, because p2 always
halts and returns 1.

Since Equiv(p1,p2) returns true whenever p halts and Equiv(p1,p2) returns false
whenever p does not halt, then clearly we are able to write a Halt function. However, we
already know that we cannot write a Halt function; it is undecidable. Therefore, we’ve
derived a contradiction and must conclude that our assumption that Equiv could exist is
false. Equiv is not computable.


