Your name: _			

The Equiv function is defined as follows.

$$\texttt{Equiv}(\texttt{p1, p2}) = \begin{cases} \texttt{true} & \textbf{if} \, \texttt{p1} \, \textbf{and} \, \texttt{p2} \, \textbf{compute the same output on all possible inputs.} \\ \texttt{false} & \textbf{otherwise} \end{cases}$$

where p1 and p2 are functions of the form

```
def MyFunc(x):
...
```

We are going to prove by reduction that Equiv is not computable. I need your help checking my proof.

1. What's the one fact we should assume in this proof? (hint: what function can we assume we have in our standard library)

That the Equiv function exists and is computable.

2. Name a function already known not to be computable.

The Halt function.

3. Here's my reduction function.

(a) Suppose the p we call Halt with is:

```
def MyFunc(x):
    x = 0
    while (true):
        x += 1
    return x
```

and suppose x is 2. What is the value of p1 in Halt?

```
def MyFunc1(y):
    def MyFunc(x):
        x = 0
    while (true):
        x += 1
    return x
MyFunc(2)
return 1
```

You can think of p1 as a "gadget" that makes p (whatever it is) return the same thing as MyFunc2 (i.e., 1) if and only if p halts.

(b) Is the reduction correct? Why or why not? Explicitly consider what happens when a given p halts and when it does not.

Yes, the reduction is correct.

If p halts, then p1 will also halt and return 1. Observe that p1 will always return 1, no matter the input y, because we ignore y and always run it on x. Since p2 always returns 1 for every input (it is a constant function), Equiv (p1, p2) returns true whenever p halts.

If p does not halt, then p1 will also not halt. In fact, p1 does not halt, no matter the input y. In this case, Equiv (p1, p2) returns false whenever p does not halt, because p2 always halts and returns 1.

Since Equiv (p1,p2) returns true whenever p halts and Equiv (p1,p2) returns false whenever p does not halt, then clearly we are able to write a Halt function. However, we already know that we cannot write a Halt function; it is undecidable. Therefore, we've derived a contradiction and must conclude that our assumption that Equiv could exist is false. Equiv is not computable.