
Midterm 2 Study Guide
Solutions Handout 27

CSCI 334: Spring 2024

Solutions

Q1. (10 points) . Terminology
You should do this exercise on your own.

Q2. (10 points) . Decision Problem
We prove that bothHalt is not computable by contradiction. Assume bothHalt exists. Then we can
write the following function.

let halt p i =
bothHalt p p i

If p halts, then bothHalt will return true because “both” p programs halt. Likewise, if p does not
halt, then bothHalt will return false because “both” p programs do not halt. Since we are able
to construct a halt function using the ordinary rules of logic (F#) with the only assumption being
the existence of bothHalt, and we know that halt is not computable, then bothHalt must not be
computable.
An interesting alternative raised in class is to define a different function, like so

let halt p i =
let f x = x
bothHalt p f i

This also works because when p halts, f also halts (because it always halts), so bothHalt returns true.
If p does not halt, bothHalts returns false because it is sufficient for either program to not halt for
bothHalt to return false. Good thinking!

Q3. (10 points) . Parsing and Evaluation
Here is one possible solution.

open Combinator

type Expr =
| Increment
| Decrement
| MoveLeft
| MoveRight
| Print

type State = { tape: int list; pos: int }

let op =
(

(pchar '+' |>> fun _ -> Increment) <|>
(pchar '-' |>> fun _ -> Decrement) <|>
(pchar '<' |>> fun _ -> MoveLeft) <|>

(pchar '>' |>> fun _ -> MoveRight) <|>
(pchar 'p' |>> fun _ -> Print)

) <!> "op"

let expr = pmany0 op <!> "expr"

let grammar = pleft expr peof <!> "grammar"

let rec getAtIndex xs i =
match xs with
| [] -> failwith "Cannot find index in list."
| y::_ when i = 0 -> y
| _::ys -> getAtIndex ys (i - 1)

let rec updateAtIndex xs i v =
match xs with
| [] when i <> -1 -> failwith "Cannot find index in list."
| [] -> []
| _::ys when i = 0 -> v::ys
| y::ys -> y::updateAtIndex ys (i - 1) v

let parse input =
let i = prepare input
match grammar i with
| Success(ast,_) -> Some ast
| Failure(_,_) -> None

let ephsPrint v =
let s =

match v with
| 0 -> "a"
| 1 -> "b"
| 2 -> "c"
| 3 -> "d"
| 4 -> "e"
| 5 -> "f"
| 6 -> "g"
| 7 -> "h"
| 8 -> "i"
| 9 -> "j"
| 10 -> "k"
| 11 -> "l"
| 12 -> "m"
| 13 -> "n"
| 14 -> "o"
| 15 -> "p"
| 16 -> "q"
| 17 -> "r"
| 18 -> "s"
| 19 -> "t"
| 20 -> "u"
| 21 -> "v"
| 22 -> "w"
| 23 -> "x"

| 24 -> "y"
| 25 -> "z"
| _ -> "poo"

printf "%s" s

let evalOp (e: Expr)(s: State) : State =
match e with
| Increment ->

let cur = getAtIndex s.tape s.pos
let upd = cur + 1
let tape' = updateAtIndex s.tape s.pos upd
{ s with tape = tape' }

| Decrement ->
let cur = getAtIndex s.tape s.pos
let upd = cur - 1
let tape' = updateAtIndex s.tape s.pos upd
{ s with tape = tape' }

| MoveLeft ->
if s.pos > 0 then

{ tape = s.tape; pos = s.pos - 1 }
else

printfn "Tape head out-of-bounds (on left)."
exit 1

| MoveRight ->
if s.pos < 10 then

{ tape = s.tape; pos = s.pos + 1 }
else

printfn "Tape head out-of-bounds (on right)."
exit 1

| Print ->
let cur = getAtIndex s.tape s.pos
ephsPrint cur
s

let rec eval (es: Expr list)(s: State) : State =
match es with
| [] -> s
| op::ops ->

let s' = evalOp op s
eval ops s'

[<EntryPoint>]
let main args =

let file = args[0]
let input = System.IO.File.ReadAllText file
let ast_maybe = parse input
match ast_maybe with
| Some ast ->

eval ast { tape = [0;0;0;0;0;0;0;0;0;0]; pos = 0 } |> ignore
0

| None ->
printfn "Invalid program"
1

Q4. (10 points) . Partial and Total Functions
(a) Partial function: {⟨n, fibonacci n⟩ | n ∈ Z ∧ x ≥ 0}
(b) Looking at our gcd function, the only operation that may be problematic is %. The answer I gave in

class assumed mod was undefined for negative numbers, but actually, I had it backward: mod
is defined for all divisors and quotients in Z. Some programming languages, like C, assume that the
quotient and divisor are not negative, and will give the wrong answer otherwise. If we stick with
the mathy definition (instead of C), then gcd appears to be undefined nowhere (because the case
where b = 0 is explicitly handled and defined), so the function is total: {⟨a, b, gcd a b⟩ | a, b ∈ Z}

(c) Total function: {⟨x, |x|⟩ | x ∈ Z}

One can use function graphs to enforce preconditions when implementing the above functions. These
are also a concise form of documentation that you might consider putting into a Javadoc or Python
docstring. Other programmers (or “future you”) will thank you.

