
Designing a Language, Part 2
Handout 22

CSCI 334: Spring 2024

Formally describe an artwork

For this activity, you will be describing two artworks, computationally.

The first artwork is “Homage to the Square: Warming” by Josef Albers (1959).

The second artwork is your choice. Your reasons for choosing an artwork are your own. We will also not engage in
any critical interpretation. Instead, we limit ourselves to a “mechanical description” for each artwork.

Do the following:

1. Snap a photo with your smartphone.

2. Try to determine the set of words that can be used to describe the artwork, drawn from two categories:

(a) primitives, and

(b) combining forms.

Be sure to define the words you use before you use them. Try to be precise; if you can be mathematical in your
precision, even better. Ideally, you will produce a small set of F# types that describe the things you see in an
artwork.

3. Describe the artwork as completely as you can. If you find that your set of words is missing something, or if
another word could be used to better describe the artwork, go back to step 2 and modify your set of words.

You may be wondering what is meant by primitive and combining form, so here are some definitions.

Primitives

A primitive is a type of data drawn from a (possibly infinite) set. It is atomic in the sense that it has no obvious
constituent parts, or it can be defined in a way that it has no constituent parts. For example, an int is often taken to
be a primitive in a programming language. Does it have constituent parts? Well, yes, in a way; from the machine’s
vantage point it can see and access an int’s individual bits. However, many programming languages (like Java) treat
them as indivisible.

Combining Form

A combining form is a language element that describes some kind of composition. In typical programming languages,
we often have two kinds of combining forms: those for data, and those for operations.

A combining form for data might be a struct in C, a class in Java, or a type in F#. A class, for instance, allows a
user to combine multiple pieces of data (i.e., the class’s fields) into a single piece of data. Many combining forms for
data are recursive in the sense that they themselves are data, so that combining forms can combine other combining
forms. For example, a class can have instances of classes in their fields.

There are two common combining forms for operations. An instruction sequence means “do this step and then the
next step.” You probably have not thought about the fact that a computer knows that it should move on to the
next line in a program after it finishes running the current line, but a programming language actually has to tell
the computer to do that. We often refer to this operation as seq. If you want a computer to perform a long list of
operations, the effect is achieved by nesting seqs. And, of course, a function is a combining form that allows us to
abstract over the data (i.e., the “formal parameters”) used in an operation. Finally, combining forms for operations
are usually recursive in the sense that they themselves are operations.



Example

As an example for this exercise, suppose that we want to describe a line. Is a line a primitive or a combining form?
It depends on how we want to describe it. Suppose we decide that a line is going to be a combining form. How can
we define it? Let’s pick apart the idea of a line.

What do we need to describe a line? I learned in geometry class that a line is defined by its endpoints. What is
an endpoint? One way of describing an endpoint is as a pair numbers, i.e., a coordinate. That means that we need
numbers. Perhaps Number should be a primitive value in our language?

Let Number be a real number from −∞ to +∞, represented by the F# data type:

type Number = float

Let Coordinate be a combining form consisting of a pair of Numbers, represented by the F# type:

type Coordinate = { x: Number; y: Number }

Let Line be a combining form consisting of a pair of Coordinates, represented by the F# type:

type Line = { start: Coordinate; finish: Coordinate }

At some point, all of these pieces of data might be tied together using something like a Canvas type:

type Canvas =

| Lines of Line list

| // other things that can be on the canvas

All of the above types comprise the nodes needed to define an AST.

Focus on defining some terms to describe what you see. Once you have what you think comes close to defining all of
the pieces of an artwork, try writing some F# code that generates an AST. No need to use a computer; just do this
exercise on paper.

Lines (

[

{

start = { x = 3.0; y = 4.0 };

finish = { x = 5.0; y = 5.0 }

}

]

)

We will explore how parsers do their magic of converting strings into ASTs in an upcoming lecture. For example, a
parser may allow us to write a sentence like the one below to generate an AST like the one above.

line starting at 3,4 and ending at 5,5

2


