
Midterm Study Guide Handout 14
CSCI 334: Spring 2024

Reading

1. “A Brief Introduction to F#”

2. “Beating the Averages”

3. “A Slightly Longer Introduction to F#’

4. “Advanced F#”

5. “Introduction to the Lambda Calculus, Part 1”

6. “Introduction to the Lambda Calculus, Part 2”

7. “Syntax”

8. “Higher-Order Functions”

Problems

Q1. (0 points) . Terminology
Review the required readings for this assignment, specifically looking for definitions for new terminol-
ogy. Write down the term and a brief definition.
Hint: Look for italicized words. Italics are sometimes used for emphasis, but it is also often used to
draw your attention to new technical terms. For example, in “A Slightly Longer Introduction to F#”,
one of the first italicized phrases is “architecture independent.” So write something like:
Architecture independence: the compiled version of a program can be run on any computer.
Find as many technical terms as you can and define them.

Q2. (0 points) . Practice Reductions
Reduce each of the following expressions to their normal forms.

(a) (λx.x)(λx.xx)(λx.xa)

(b) (λx.x)(λy.yy)(λz.za)

(c) (λx.λy.xyy)(λa.a)b

(d) (λx.xx)(λy.yx)z

(e) (λx.(λy.(xy))y)z

Q3. (0 points) . Church Numerals

Church encoding is a means of representing data and operators purely in the lambda calculus.
The data and operators form a mathematical structure which is embedded in the lambda
calculus. The Church numerals are a representation of the natural numbers using lambda
notation. The method is named for Alonzo Church, who first encoded data in the lambda
calculus this way.

The natural numbers are written using Church numerals as follows.

Number Lambda Expression

0 λf.λx.x

1 λf.λx.fx

2 λf.λx.f(fx)

3 λf.λx.f(f(fx))

… …

n λf.λx.fnx

Subtraction by one can be achieved using the pred function.

pred ≡ λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λu.u)

Prove that 1 - 1 = 0 by performing a reduction using Church numerals and the above pred definition.

Q4. (0 points) . Backus-Naur Form
Suppose you start with the following (slightly augmented) grammar for the lambda calculus.

<expression> ::= <value>
| <abstraction>
| <application>
| <parens>
| <arithmetic>

<value> ::= v ∈ N
| <variable>

<variable> ::= α ∈ { a ... z }
<abstraction> ::= λ <variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)
<arithmetic> ::= (<op> <expression> ... <expression>)
<op> ::= o ∈ { +, - }
Add grammar support for exponentiation. For example, one should be able to parse the following
expression:

((λx.(+ x 2))1)2

In particular, the resulting parse tree should ensure that it correctly evaluates to 9.

Q5. (0 points) . Currying and Partial Application
In this problem, we will use currying and partial application to produce convenience functions.

(a) Begin by writing a logging function. This function is intended to be called by another program
and should write a message to the given file. Here is a sample output.
[2023-10-23 08:20][mysqld] FAIL: Tried (and failed) to read database too many times. Quitting.

Here is another sample output.
[2022-12-30 21:53][logind] WARN: User 'dbarowy' attempted to login without password.

Observe that the above string has four fields:
• The date, in yyyy-MM-dd HH:mm format.
• The name of the program (the “daemon”) calling the log function.
• The severity of the message (which is either INFO, WARN, or FAIL).
• A message.

Your log function should have the following declaration.
let log (date: System.DateTime)(severity: string)(daemon: string)(message: string)(file: string) : unit = ...

To write to a file, log should use the System.IO.File.AppendAllText function (see File.AppendAllText
documentation). You will also need to convert the System.DateTime object into a string having
the format shown above (see System.DateTime documentation). Hint: if you find this to be
difficult, be sure to look at DateTime’s ToString method.

(b) Next, write the following convenience function.

https://learn.microsoft.com/en-us/dotnet/api/system.io.file.appendalltext?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.appendalltext?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.date?view=net-7.0

let lognow = ...

Importantly, lognow should be defined only by partial application of log. Specifically, lognow
should be called log with a single argument corresponding to the current DateTime (see the
documentation for Now). If you have done this correctly, then the return type for lognow will be
string -> string -> string -> string -> unit.

(c) Next, write the following three convenience functions.
let info = ...

let warn = ...

let fail = ...

Each definition should be defined by calling lognow with a single argument corresponding to the
severity parameter. If you have done this correctly, then the return type for each of the above
functions will be string -> string -> string -> unit. You should be able to call the above
functions like so,
info "daemon" "message" "foobar.txt"

and the effect will be that text resembling the following will be written to the file foobar.txt:
[2023-10-23 08:20][daemon] INFO: message

(d) Finally, make it so that the user can call your program from the command line with an expression
of the form:
$ dotnet run <severity> <daemon> <message> <file>

https://learn.microsoft.com/en-us/dotnet/api/system.datetime.now?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.now?view=net-7.0

