Converting Derivation Trees to Abstract Syntax Trees

When we parse a sentence using a grammar to produce a tree, that tree is called a <u>derivation tree</u>. Derivation trees show precisely how we came to understand the structure of a sentence. However, for many uses, we don't need all of the information provided in a derivation. Indeed, sometimes the amount of detail in a derivation tree makes it difficult to see important structure.

For this reason, we often use an alternative tree form when trying to understand a structure. An <u>abstract syntax tree</u>, or AST, gives us the essential structure of a parsed structure. Students often have difficulty understanding the notion of ASTs at first, because the rules for converting a derivation tree to an AST vary from language to language. Nevertheless, an AST always has the following properties:

- All of the interior nodes of an AST are operations.
- All of the leaf nodes of an AST are data.

Consider the lambda calculus expression $\lambda a.(ab)c$. Its derivation tree and corresponding AST are shown side-by-side.

Figure 1: Derivation of $\lambda a.(ab)c.$

Figure 2: Abstract syntax tree for $\lambda a.(ab)c$.

Lambda Calculus Conversion Rules

In Figure 1 we have a complete record of how we determined the structure of a sentence using the class lambda grammar. By contrast, Figure 2 throws away a great deal of the derivation information, leaving us instead with a small tree that shows only operations and data. In the lambda calculus, the only operations are abstraction (λ) and application (α). Everything else is data.

Many students discover, with practice, that they can derive an AST directly from a lambda expression. If you have trouble seeing how this might be done, start by producing a derivation tree, then try converting the tree into an AST using the rules below. When you are done, discard the topmost <expr>.

Figure 3: Variables, where α is a variable like x.

Figure 4: Numbers, where v is a number like 1.

Figure 5: Parentheses, where e is some expression.

Figure 6: Application, where e_1 and e_2 are expressions.

Figure 7: Abstraction, where α is a variable like x and e is an expression.