
Handout 9
CSCI 334: Spring 2024

Converting Derivation Trees to Abstract Syntax Trees

When we parse a sentence using a grammar to produce a tree, that tree is called a derivation tree.
Derivation trees show precisely how we came to understand the structure of a sentence. However,
for many uses, we don’t need all of the information provided in a derivation. Indeed, sometimes the
amount of detail in a derivation tree makes it difficult to see important structure.

For this reason, we often use an alternative tree form when trying to understand a structure. An
abstract syntax tree, or AST, gives us the essential structure of a parsed structure. Students often have
difficulty understanding the notion of ASTs at first, because the rules for converting a derivation tree
to an AST vary from language to language. Nevertheless, an AST always has the following properties:

• All of the interior nodes of an AST are operations.

• All of the leaf nodes of an AST are data.

Consider the lambda calculus expression λa.(ab)c. Its derivation tree and corresponding AST are
shown side-by-side.

<expr>

<abs>

<var>

a

<expr>

<app>

<expr>

<parens>

<expr>

<app>

<expr>

<value>

<var>

a

<expr>

<value>

<var>

b

<expr>

<value>

<var>

c

Figure 1: Derivation of λa.(ab)c.

λ

a @

@

a b

c

Figure 2: Abstract syntax tree for λa.(ab)c.

1



Lambda Calculus Conversion Rules
In Figure 1 we have a complete record of how we determined the structure of a sentence using the
class lambda grammar. By contrast, Figure 2 throws away a great deal of the derivation information,
leaving us instead with a small tree that shows only operations and data. In the lambda calculus, the
only operations are abstraction (λ) and application (@). Everything else is data.

Many students discover, with practice, that they can derive an AST directly from a lambda expression.
If you have trouble seeing how this might be done, start by producing a derivation tree, then try
converting the tree into an AST using the rules below. When you are done, discard the topmost <expr>.

<value>

<var>

α α

Figure 3: Variables, where α is a variable like x.

<value>

v v

Figure 4: Numbers, where v is a number like 1.

<parens>

<expr>

e e

Figure 5: Parentheses, where e is some expression.

<app>

<expr>

e1

<expr>

e2

@

e1 e2

Figure 6: Application, where e1 and e2 are expressions.

<abs>

<var>

α

<expr>

e

λ

α e

Figure 7: Abstraction, where α is a variable like x and e is an expression.

2


