
Lab 6
Due Monday, April 8 by 11:59pm

Handout 17
CSCI 334: Spring 2024

Coding Guidelines
Each question in this assignment must be written using LATEX. I provide a LATEX template in your repository
for you to use to get started.

Keep in mind that LATEX is a programming language. The template I provide compiles without error as-is.
Treat this homework as you would with any other programming language: make small changes and compile
frequently using pdflatex. For full credit, you must submit both your .tex source file as well as the rendered
.pdf file. Your source file should be called lab-6.tex and your PDF should be called lab-6.pdf. (5 points)
Your source file should compile without error. (5 points)

Turn-In Instructions

Turn in your work using the git repository assigned to you. The name of the git repository will have the
form https://aslan.barowy.net/cs334-s24/cs334-lab06-<USERNAME>.git. For example, if your CS
username is abc1, the repository would be https://aslan.barowy.net/cs334-s24/cs334-lab06-abc1.
git.

You should have received an invite to commit to the repository via email. If you did not receive an email,
please contact me right away!

Group Programming Assignment
This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit your
solution. No code copying is allowed. Tell me who your partner is by committing a collaborators.txt file
to your repository. Be sure to commit this file whether you worked with a partner or not. If you
worked by yourself, collaborators.txt should contain something like “I worked by myself.” (5 points)

This assignment is due on Monday, April 8 by 11:59pm.

Reading

1. (Required) “How to Fix a Motorcycle”

2. (Required) “Proof by Reduction”

https://aslan.barowy.net/cs334-s24/cs334-lab06-<USERNAME>.git
https://aslan.barowy.net/cs334-s24/cs334-lab06-abc1.git
https://aslan.barowy.net/cs334-s24/cs334-lab06-abc1.git

Problems

Q1. (15 points) . How to Fix a Motorcycle
Read the excerpt of Zen and the Art of Motorcycle Maintenance titled “How to Fix a Motorcycle” by
Robert Pirsig, and then answer the following questions. You may write as much as you like, but in the
interest of keeping it feasible for me to read all of these, I would appreciate it if you kept your responses
short. A good guideline is to write no more than a sum total of 400 words for all three questions.

(a) Think back about your experiences doing programming in the past. Think of a time when it
was difficult and you were feeling demoralized. The experience may have been a programming
assignment, programming for work, or programming for fun. Describe your experience and how
any of Pirsig’s “gumption traps” may apply.

(b) Whether Pirsig’s advice pertains to your situation or not, what would you do differently now if
you were in that situation again?

(c) To what extent do you think your situation could have been improved by a better programming
language? In other words, suppose your programming language helped you more. What pitfalls or
gumption traps might be avoided? Don’t worry too much about whether your imagined features
are impractical to implement or even impossible (e.g., not computable).

Although this assignment is a partner lab, the answers to this particular question should be your own.

Q2. (30 points) . Partial and Total Functions
For each of the following function definitions, (i) give the graph of the function. Say whether this is a
(ii) partial function or a total function on the integers. If the function is partial, say where the function
is (iii) defined and where it is (iv) undefined. You may limit your analysis to determining the set of
integers for which the function is defined.
For example, take the function f(x) = if x > 0 then x + 2 else x/0
The graph of this function is the set of ordered pairs {⟨x, x + 2⟩ |x > 0 ∧ x ∈ Z}. The function is
partial. It is defined on all integers greater than 0 and undefined on integers less than or equal to 0.
Functions:

(a) f(x) = if x < 10 then 0 else f(x − 2)
(b) f(x) = if x + 3 > 3 then x + 4 else x/0
(c) f(x) = if sin(x) > 0 then 1 else f(x + π)

Q3. (20 points) . Halting on any input
The function HaltAny is defined as:

HaltAny(p) =

{
true if p halts on any input.
false otherwise.

Assume p is a String representation of a Python function always having the form:

def prog(x):
whatever

and that x is just an ordinary primitive value, like an integer.
Prove that HaltAny is not computable. Your answer should be in the form of a function, written in
the programming language of your choice.
Note: do not confuse HaltAny with HaltAll. The function HaltAll halts when all inputs cause some
program, p, to halt. For example, for the following program, HaltAny returns true while HaltAll
returns false:

def prog(i):
if i = 0

return
else

while true

Q4. (25 points) . Garbage Collection
A garbage collection algorithm performs automatic cleanup of unused memory in a program. Modern
programming language runtimes routinely perform garbage collection in order to dramatically simplify
memory management. Garbage has the following definition.

At a given point i in the execution of a program P , a memory location m is garbage if
continued execution of P from i will not access location m again.

Nonetheless, garbage collection using the above definition of garbage is not computable. Instead,
languages solve a simpler problem by using a slightly different definition of garbage:

At a given point i in the execution of a program P , a memory location m is definitely garbage
if continued execution of P from i cannot access location m again.

John McCarthy, inventor of the LISP programming language, also invented garbage collection. His
“mark sweep” algorithm uses the latter definition, because it only reclaims memory that is impossible
to re-read.
Prove that garbage collection using the first definition is not computable by reduction. Your answer
should be in the form of a function, written in the programming language of your choice.
Assume that you have the following isGarbage function available in the standard library of the pro-
gramming language of your choice.

boolean isGarbage(String p, String m, int i)

Calling isGarbage with the source code for program text p, variable name m, and line number i has
the following behavior.

isGarbage(p, m, i) returns true if m is garbage at line i of program p.
isGarbage(p, m, i) returns false otherwise.

You may assume that isGarbage always halts. You may also assume that p is “simple” code that does
not contain class or function definitions.

Hint: we know that Halt, HaltAll, and HaltAny are not computable. Take your pick.

Q5. (1
10

th bonus point) . Optional: Feedback
I always appreciate hearing back about how easy or difficult an assignment is.
For 1

10
th of a bonus to your final grade, please fill out the following Google Form.

https://forms.gle/rogKXiBC1RuTK2uf9

