
Lab 5
Due Monday, November 11 by 11:59pm

Handout 12
CSCI 334: Spring 2024

Coding Guidelines
Each question in this assignment should go into the appropriate project directory. For example, the solution
to question 1 should be in a folder called “q1”. When a solution is a program, one should be able to cd into
the question directory and then run your program by typing the command “dotnet run”, with additional
arguments depending on the question.

Every program should be split into two pieces: a “Program.fs” file that contains the main method and
associated program-startup helpers (if needed), and another “Library.fs” file that contains the function(s)
of interest in the question. Library code should be contained within a module named “CS334”. Be sure
to provide usage output (defined in main) for all programs that require arguments. For full credit, your
program should both build and run correctly.

If any of your programs take input from the user, be sure that your program validates input: when a user
fails to supply input, or supplies input that does not make sense, your program should print a usage message
and return with a nonzero exit code. Users should never experience a program crash in this class; exceptions
should be prevented from arising or be caught whenever bad input is encountered. Think through problem
corner cases carefully.

Turn-In Instructions

Turn in your work using the git repository assigned to you. The name of the git repository will have the
form https://aslan.barowy.net/cs334-s24/cs334-lab05-<USERNAME>.git. For example, if your CS
username is abc1, the repository would be https://aslan.barowy.net/cs334-s24/cs334-lab05-abc1.
git.

You should have received an invite to commit to the repository via email. If you did not receive an email,
please contact me right away!

Group Programming Assignment
This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit your
solution. No code copying is allowed. Tell me who your partner is by committing a collaborators.txt file
to your repository. Be sure to commit this file whether you worked with a partner or not. If you
worked by yourself, collaborators.txt should contain something like “I worked by myself.” (5 points)

This assignment is due on Monday, November 11 by 11:59pm.

Reading

1. (Required) “Higher-Order Functions”

2. (As needed) Microsoft’s Official F# Documentation

https://aslan.barowy.net/cs334-s24/cs334-lab05-<USERNAME>.git
https://aslan.barowy.net/cs334-s24/cs334-lab05-abc1.git
https://aslan.barowy.net/cs334-s24/cs334-lab05-abc1.git
https://docs.microsoft.com/en-us/dotnet/fsharp/

Problems

Q1. (35 points) . Mapping Functions
Write a function censor that takes a list of banned words and a list of words to potentially censor.

let censor (banned: string list)(words: string list) : string list = ...

Censored words are replaced with XXXX. For example,

> censor
- ["party"; "hoxsey"]
- ["we're"; "going";"to";"skip";"class";"for";"a";"party";"on";"hoxsey"]
- ;;
val it: string list =
["we're"; "going"; "to"; "skip"; "class"; "for"; "a"; "XXXX"; "on"; "XXXX"]

Your censor function must use List.map, making use of another function memberOf. memberOf is a
recursive function that takes a list of banned words and a single word to potentially censor, returning
true if the word is in the banned list and false otherwise. Censoring should work regardless of case
(i.e., “hoxsey” and “HOXSEY” should be considered the same).

let rec memberOf(banned: string list)(word: string) : bool =

memberOf should not call any other functions except that you may use the following case-insensitive
string comparison function,

System.String.Equals(s1, s2, System.StringComparison.CurrentCultureIgnoreCase)

where s1 and s2 are strings.
You should be able to run your program on the command line by supplying a path to a banned word
list and a sequence of banned words.

$ dotnet run banned.txt I need an extension because I got lost in the steam tunnels
I need an XXXX because I got lost in the XXXX XXXX

$ dotnet run banned.txt I like programming languages more than the fried rice at Blue Mango
I like programming languages more than the XXXX XXXX at XXXX XXXX

If the program is run without any arguments, or if the banned file does not exist, it should print out
the following usage string and quit with exit code 1:

Usage: <banned.txt> <word_1> [... <word_n>]

Here are some tips for making the above work.
To read in a file, you can use the following construct, which opens filename and returns a list of
strings, one string for each line of the file.

IO.File.ReadLines(filename) |> Seq.toList

If filename does not exist, the above will throw System.IO.FileNotFoundException exception. Pre-
vent that from happening by using the System.IO.File.Exists method or just handle the exception
when it is raised.
To convert an array to a list, use the Array.toList function.
F# has array-slicing capabilities that let you easily take a subset of an array, just like in Python. See
the F# documentation.
Finally, a list of strings strs can be concatenated into a single string with a separator of your choice
(e.g., " ") like so:

System.String.Join(" ", strs)

Which words to include in your banned word list is up to you, however, be sure to include at least the
set of words that make the above examples work.
The project directory for this question should be called “q1”. Your censor and memberOf functions
should be in a module called CS334 stored in a file called Library.fs and your main function should
be in a file called Program.fs as in previous labs. As usual, write your program to guarantee that
user-provided input makes sense and does not throw an exception.

Q2. (20 points) . F# Map for Trees
(a) The binary tree datatype

type Tree<'a> =
| Leaf of 'a
| Node of Tree<'a> * Tree<'a>

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this
type must have at least a root node).
Write the function

let rec maptree f t = ???

where f is a function and t is a tree. maptree should return a new tree that has the same structure
as t but where the values stored in t have the function f applied to them.
Graphically, if f is a function that can be applied to values stored in the leaves of tree t, and t
is the tree on the left, then maptree f t should produce the tree on the right.

•

•

•

w i

•

l l

•

•

i a

•

m s

•

•

•

f w f i

•

f l f l

•

•

f i f a

•

f m f s

For example, if f is the function let f x = x + 1 then
maptree f (Node(Node(Leaf 2, Leaf 3), Leaf 4));;
should evaluate to Node (Node (Leaf 3,Leaf 4),Leaf 5).

(b) In a comment block above your maptree definition, explain your definition in one or two sentences.
Comment blocks in ML look like the following.

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/slices

(*
* Says hello to the given name.
*
* @param name The name.
* @return Nothing.
*)
let sayHello name =

printfn "Hello %s!" name

Be sure to provide @param and @return tags.
(c) What type does F# give to your function? Why isn’t it the type ('a → 'a) → Tree<'a> →

Tree<'a>? Provide an answer in the comment block of your maptree function.

The project directory for this question should be called “q2”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and output like the kind shown above
should be printed to the screen. Be sure to provide several examples that demonstrate that your
function works correctly.

Q3. (20 points) . F# Reduce for Trees
The binary tree datatype

type Tree<'a> =
| Leaf of 'a
| Node of Tree<'a> * Tree<'a>

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this type
must have at least a root node).

(a) Write a function
treduce : ('a → 'a → 'a) → Tree<'a> → 'a

that combines all the values of the leaves using the binary operation passed as the first parameter.
In more detail, if oper : 'a → 'a → 'a and t is the nonempty tree on the left in this picture,

•

•

•

w i

•

l l

•

•

i a

•

m s

oper

oper

oper

w i

oper

l l

oper

oper

i a

oper

m s

then treduce oper t should be the result obtained by evaluating the tree on the right. For
example, if f is the function

let f x y = x + y

then treduce f (Node(Node(Leaf 1, Leaf 2), Leaf 3)) = (1 + 2) + 3 and the output is 6.
(b) In a comment block above your treduce definition, explain your definition of treduce in one or

two sentences. Be sure to provide @param and @return tags.

The project directory for this question should be called “q3”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and output like the kind shown above
should be printed to the screen. Be sure to provide several examples that demonstrate that your
function works correctly.

Q4. (20 points) . Cartesian Product
Write an F# function cproduct that computes the Cartesian product of two lists. The Cartesian
product is defined as

A×B = {(a, b) | a ∈ A and b ∈ B}

cproduct must have the following type signature:

cproduct: 'a list -> 'b list -> ('a * 'b) list

Because we are using a list instead of a set data type, it is possible that your algorithm will generate
duplicate values. Do not worry about duplicate values for this assignment.
In your main method, compute the following:

let xs: (char * int) list = cproduct ['a'; 'b'; 'c'; 'd'] [1; 2; 3; 4]

let ys: (char * int) list = cproduct ['a'; 'b'; 'c'; 'd'] []

let zs =
cproduct

['a'; 'b'; 'c'; 'd']
([1; 2; 3; 4] |>

List.map
(fun _ ->

System.Threading.Thread.Sleep(1000)
System.DateTime.Now

)
)

The project directory for this question should be called “q4”. You should be able to run your program
on the command line by typing “dotnet run”.

Q5. (1
10

th bonus point) . Optional: Feedback
I always appreciate hearing back about how easy or difficult an assignment is.
For 1

10
th of a bonus to your final grade, please fill out the following Google Form.

https://forms.gle/rogKXiBC1RuTK2uf9

