Lab 2 Handout 6
Due Monday, February 19 by 10:00pm CSCI 334: Spring 2024

Coding Guidelines

Each question in this assignment should go into the appropriate project directory. For example, the solution
to question 1 should be in a folder called “q1”. When a solution is a program, one should be able to cd into
the question directory and then run your program by typing the command “dotnet run”, with additional
arguments depending on the question.

Every program should be split into two pieces: a “Program.fs” file that contains the main method and
associated program-startup helpers (if needed), and another “Library.fs” file that contains the function(s)
of interest in the question. Library code should be contained within a module named “CS334”. Be sure
to provide usage output (defined in main) for all programs that require arguments. For full credit, your
program should both build and run correctly.

If any of your programs take input from the user, be sure that your program validates input: when a user
fails to supply input, or supplies input that does not make sense, your program should print a usage message
and return with a nonzero exit code. Users should never experience a program crash in this class; exceptions
should be prevented from arising or be caught whenever bad input is encountered. Think through problem
corner cases carefully.

— | UrN-In Instructions

Turn in your work using the git repository assigned to you. The name of the git repository will have the
form https://aslan.barowy.net/cs334-s24/cs334-1ab02-<USERNAME>.git. For example, if your CS
username is abcl, the repository would be https://aslan.barowy.net/cs334-s24/cs334-1ab02-abcl.
git.

You should have received an invite to commit to the repository via email. If you did not receive an email,
please contact me right away!

Group Programming Assignment

This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit your
solution. No code copying is allowed. Tell me who your partner is by committing a collaborators.txt file
to your repository. Be sure to commit this file whether you worked with a partner or not. If you
worked by yourself, collaborators.txt should contain something like “I worked by myself.” (5 points)

This assignment is due on Monday, February 19 by 10:00pm.

Reading

1. (Required) “Advanced F#”
2. (As needed) Microsoft’s Official F# Documentation

https://aslan.barowy.net/cs334-s24/cs334-lab02-<USERNAME>.git
https://aslan.barowy.net/cs334-s24/cs334-lab02-abc1.git
https://aslan.barowy.net/cs334-s24/cs334-lab02-abc1.git
https://docs.microsoft.com/en-us/dotnet/fsharp/

Q1.

Problems

(45 POINTS) - . oottt Zipping and Unzipping

(@)

(d)

Write a function zip(xs: 'a list)(ys: 'b list) : ('a * 'b) list that computes the prod-
uct of two lists of arbitrary length. You should use pattern matching to define this function:

> Zip [1;3;5;7] ["all;llbll;“cll;lldll];;
val it : (int * string) list = [(1, "a"); (3, "b"); (5, "c"); (7, "d")]

When one list is longer than the other, repeatedly pair elements from the longer list with the last
element of the shorter list.

> le [1;3] [Ilall;’lb";"cll;lldll];;
val it : (int * string) list = [(1, "a"); (3, "b"); (3, "c"); (3, "d")]

In the event that one or both lists are completely empty, return the empty list. Note that in
dotnet fsi, calling the function as below will produce an error because F# cannot determine
the type of the element of an empty list.

> zip [1;3;5;7] [1;;

zip [1;3;5;7] [1;;

code/stdin(14,1): error FS0030: Value restriction. The value 'it'
has been inferred to have generic type

val it : ((int * int * int * int) * '_a) list
Either define 'it' as a simple data term, make it a function with
explicit arguments or, if you do not intend for it to be genmeric,
add a type annotation.

To make empty lists work, explicitly provide a type for the return value.

> let xs : (int * int) list = zip [1;3;5;7] [1;;
val xs : (int * int) list = []

Write the inverse function, unzip(xs: ('a * 'b) list) : 'a list * 'b list, which behaves
as follows:

> unzip [(1,"a"); (3,"b") ;(5,"c"); (7,"de")];;
val it : int list * string list = ([1; 3; 5; 7], ["a"; "b"; "c"; "de"])
Write zip3(xs: 'a list)(ys: 'b list)(zs: 'c list) : ('a * 'b * 'c) list, that zips
three lists.
> zip3 [1;3;5;7] ["a";"b";"c";"de"] [1;2;3;4];;
val it : (int * string * int) list =
[(1’ llall’ 1); (3’ ||bl|’ 2); (5, "C", 3); (7’ lldell’ 4)]
You must use zip in your definition of zip3.

Provide a main function that exercises all of the above cases, plus a few more that you think of
yourself.

The project directory for this question should be called “q1”. You should be able to run this program
using “dotnet run” without any additional arguments.

Q2. (50 POINES) ..ttt Grid Game

This question asks you to write a small game called “Grid Game.” In F# we do not use for or while
loops and we do not use mutable state. Therefore, to implement this game in F#, you will need to
make extensive use of recursion and pattern matching.

When the user starts the game, they should be shown the current board and be prompted to make a
move.

$ dotnet run
[xI[1C 1[=]
=10=1CL 1[1]
CICIC1C=]
L1010 10%]

Enter a move (u, d, 1, r, exit):

Here, the user’s position is marked by an x. Walls are indicated by a =, and a goal is indicated by a *.
If you're feeling creative, feel free to customize the game display, but be sure to keep the mechanics as
specified in this handout.

The user can move by entering a move and pressing [Entero)]. For example, typing r and then
moves to the right.

x1[1C 1[=]
(=1(=1C1[1
CI1C1C1C=]
L1010 10+
Enter a move (u, d, 1, r, exit): r
[1x1[1[=]
[(=1(=1C1[1]
CI101C01[=]
L1010 10+

Enter a move (u, d, 1, r, exit):

If the user attempts to move off the board or into a wall, the game should tell them that they can’t
do that.

[10xI[1[=]

(=1=1C1C1

L1010 1[=]

101010

Enter a move (u, d, 1, r, exit): d Enter.]

There's an obstacle in your path. Try again. Valid moves are u, d, 1, r, exit.
When the user finds the goal, the game should tell them that they found it, and it should then quit.
C1C01C1[=]

(=1=1C1C1

C1C1C1C=]

[10 10x][*]

Enter a move (u, d, 1, r, exit): r

You found the goal!
$

The user can also explicitly ask to exit the game.

Enter a move (u, d, 1, r, exit): exit

Bye!

$

You should implement the following functions, and they should all be kept in your Library.fs file in

a C3334 module. The only function in your Program.fs should be your main function. Before starting
coding, you might take some time to plan out how all of the functions relate to each other.

(a)

initBoard returns an initialized board.

initBoard: unit -> Location[][]

A board should be represented as a Location[][] (i.e., a 2D array), where the first index rep-
resents the row (y coordinate) and the second index represents the column (x coordinate). A
Location is defined as follows:

type Location =
| Empty

| Wall

| Goal

You may use a fixed initial board for this function, and the size of the board is up to you. The
board should contain at least one obstacle and at least one goal but it may contain multiple
obstacles and multiple goals. The easiest way to do that is to use a nested array literal. For
example, here is a bool [] [] literal.

let arr = [| [| true; false |]; [| false; true |] |]

For an extra credit opportunity, alter initBoard so that it

e initializes the board randomly and
e with a random size and
e at least one goal is attainable.

You may not use loops to solve this, which means that your code must recursively initialize each
board position using System.Random. Note: this bonus is difficult.

initPosition returns an initial player position.

initPosition: board: Location[][] -> Position
where a Position is defined as
type Position = { row: int; col: int }

This is an example of an F# record type. You can initialize a record using a record literal, like
so:

let r1 = { row = 101; col = -34 }

One convenient feature of records is the ability to use F#’s copy and update shorthand to create
a new record based on an old one. For example,

let r2 = { r1 with col = 0 }

r2 will have the values row = 101 and col = 0.

As with initBoard, you may use a fixed initial position. For an extra credit opportunity, alter
initPosition so that it

e initializes the position randomly such that
e the game is not instantly won.

Again, you will need to use recursion and System.Random to correctly implement the bonus
solution. Note: this bonus is not difficult.

https://learn.microsoft.com/en-us/dotnet/api/system.random?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.random?view=net-8.0

()

The play function is where all the action occurs. It should be called once for each turn.

play: board: Location[][] -> pos: Position -> unit

where board is the board and pos is the position after the previous turn.

This function should display the board, prompt the user for a valid move, and check that the
move does or does not win the game. If the game is won the program should inform the user and
then quit. If the game can continue, play should call itself recursively with the updated position.

The display function prints a board to the screen.
display: board: Location[][] -> row: int -> col: int -> pos: Position -> unit

where board is the board, row and col are the positions being printed, and pos is current position
of the player.

At each iteration of the display, it should either print something and then call itself recursively,
or return a unit. You may find the printfn and printf functions useful; the distinction between
the two being that the former function appends a newline at the end of the printed string and
the latter does not. The initial call to display should always start with a row of 0 and a col of
0. The function also prints the player’s location on the board.

The prompt function repeatedly prompts a user until they provide it with a valid move or an exit
command.

prompt: board: Location[][] -> pos: Position -> Position

where board is the board and pos is the current position.

prompt should call the System.Console.ReadLine ()| function to read input. If the user provides
bad input, the function should tell them, and continue to prompt until the input is acceptable.
Bad input comes in two forms. It is either invalid, meaning that the move is unrecognized (e.g.,
the user enters z), or it runs the player into an obstacle. The prompt function should rely on the
helper function move (described below) and the PositionUpdate type to determine what to do.

type PositionUpdate =
| Update of Position
| Invalid

| Obstacle

| Exit

If the user tells the prompt function that they would like to exit the game, the program should
exit immediately using F#’s exit: int -> 'a function. Once the user has provided a valid
command, prompt should return an updated Position.

The move helper function should process the input entered by a user and return a PositionUpdate
so that prompt knows what to do.

move: board: Location[][] -> pos: Position -> movstr: string -> PositionUpdate

where board is the board, pos is the current position, and movstr is the string entered by the
user (e.g., d). Valid values of movstr are u, d, 1, r, and exit. The move function should rely
on the hitsObstacle function (described below) to determine whether the user has run into an
obstacle.

The hitsObstacle function returns true if a user has run into an obstacle or runs off the board
and false otherwise.

hitsObstacle: board: Location[][] -> pos: Position -> bool

where board is the board and pos is the proposed position.

https://learn.microsoft.com/en-us/dotnet/api/system.console.readline?view=net-8.0

(h) Finally, the gameWon function returns true if the player has moved into a goal location.

gameWon: board: Location[][] -> pos: Position -> bool

where board is the board and pos is the position returned by prompt.

The project directory for this question should be called “q2”. You should be able to run this program
using “dotnet run” without any additional arguments.

