
Lab 10
Due Monday, May 13 by 11:59

Handout 27
CSCI 334: Spring 2024

Turn-In Instructions
For this lab, you will continue to work with your existing project repository. Be sure to follow the instructions
for committing your file to the appropriate branch.

Turn in your work using the git repository assigned to you. The name of the git repository will have the form
https://aslan.barowy.net/cs334-s24/cs334-project-<USERNAME1>-<USERNAME2>.git For example, if
your CS username is abc1 and your partner’s is def2, the repository would be https://aslan.barowy.net/
cs334-s24/cs334-project-abc1-def2.git

Pair Programming Assignment
This is a pair programming lab. Like previous partner labs, you may work with a partner. However, for pair
programming assignments, you may collaborate to produce a single solution. You do not need to submit a
collaborators.txt file for this lab.

This assignment is due on Monday, May 13 by 11:59.

Reading

1. (Required) Read “The Rise of Worse is Better” from the course packet. Consider this reading to be
helpful (and amusing) advice from an expert developer about developing large software projects.

2. (Required) Read “Unit Testing in F#” from the course packet.

3. (As needed) Read “Implementing Scope” and “Implementing Functions” from the course packet if
your language makes use of these features.

https://aslan.barowy.net/cs334-s24/cs334-project-<USERNAME1>-<USERNAME2>.git
https://aslan.barowy.net/cs334-s24/cs334-project-abc1-def2.git
https://aslan.barowy.net/cs334-s24/cs334-project-abc1-def2.git

Problems

Q1. (10 points) . Set the Project Branch
Your work must be committed to a branch called mostly-working.

To create and switch to a mostly-working branch:

(a) Run git checkout -b mostly-working, which will create a new branch called mostly-working.
(b) Make your changes, then git add and git commit as appropriate to save your changes.
(c) To push the new branch to aslan for the first time, run git push -u origin mostly-working.

We need to push differently than usual because the mostly-working branch you just created does
not exist on the server. Subsequent calls to git push can be made as usual.

(d) Go to your repository and verify that your new mostly-working branch appears in the web
interface.

After you have pushed the mostly-working branch to the server, if your partner wants to check out
the same branch, they should first git pull and then run git checkout mostly-working.

Q2. (40 points) . Mostly Working Project Prototype
In this assigment, you will build a “mostly working” version of your language.
Your goal for this assignment is to implement the parts of your language needed to run the examples
described in your last project checkpoint. They should produce the outputs described in your project
proposal. It’s OK if you can’t get all of the examples working, but I would like to see you make a
strong attempt at each one.
At this point, students often realize that their initial vision of their language is not going to work out.
Maybe the proposed language is hard to parse, or some detail had not been thought out. That’s OK!
You are free to change the language syntax (and, consequently, the examples) to make it easier to
parse, and if you need to cut a corner or two in the evaluator (e.g., ignoring certain cases), that’s also
OK. Just be sure to note which elements need further work for the final submission.
Be sure to see the last question in this handout for the organization of code for this checkpoint.
Remember that you must use F# for your implementation.

Q3. (30 points) . Minimal Semantics

This version of your project should explain the semantics of at least two of the constructs in your
program. A language semantics explains how syntax is converted into an AST node (or nodes) and
what that AST fragment means. A good choice at this stage is to describe one of your language’s
primitives (e.g., data) and one of your language’s combining forms (e.g., an operation). For example,
you might build the following table.

Syntax Abstract Syntax Prec./Assoc. Meaning
<n> Number of int n/a n is a primitive. We represent integers

using the 32-bit F# integer data type
(Int32).

<expr> + <expr> PlusOp of Expr * Expr 1/left PlusOp evaluates two expressions, e1 and
e2, adding their results, finally yielding
an integer. Both e1 and e1 must each
evaluate to int, otherwise the interpreter
aborts the computation and alerts the
user of the error.

Your semantics does not need to be formal, and it does not need to be in a table, but it should discuss
the items shown the table above. For your final project, you will be required to document all of the
parts of your language, so if you want to get a head start, you may describe more than two constructs
here.
Your semantics should be added to the specification document that appears in your “code” folder. You
must use LATEX for your specification.

Q4. (20 points) . Tests
This submission is required to have at least one test. The required test should be an “end-to-end”
test that ensures that for a given program in your language (and user-provided input, if your language
needs them) you get a given output. The precise content of the test is up to you, because it’s your
language, but you must have at least one test. To be clear, the test should check that a parsed and
evaluated input produces an expected output.

Your final project will require more tests, at least one for each evaluation rule in your eval function.
If you want to get a head start, you may work on more now. From personal experience developing
languages, I view tests as a time-saver and not a time-waster. It is always frustrating to discover that
a newly-added feature breaks other functionality. Making that discovery well after you’ve added the
feature—that’s even worse. Having a good test suite will help you find problems early, and it will save
you a lot of sweat and tears.

You might also consider testing your parsers, which are pure functions and relatively “easy” to test.
To test parsers, you will first need to prepare your input string, then pass it to one of your parser
functions, then check for Success or Failure in your test.

I should be able to run your one test by running $ dotnet test from your code directory. Since tests
run in the folder that your sln file resides, you will need to reorganize your project. Your solution
should be in the code folder, your language implementation should be in a subfolder, like code/lang,
and your tests should be in a folder called code/tests. See the reading on tests in the course packet
for more details about project organization.

