DigiWeave: Language Specification

Angela Wang and Catherine Yeh
Spring 2020

1 Introduction

Our language is essentially a friendship bracelet pattern generator. It will allow users to design their own patterns and
test out whether they would actually be feasible to create beforehand (ex. no gaps in knots, strings end up in right
position, etc.). Making friendship bracelets is also something a lot of people do, so we feel like a pattern generator
would be a useful tool to have.

We think this would make a worthwhile programming language because if designed correctly, it will allow the genera-
tion of (possibly) infinite designs, fostering creative expression through the aid of technology. Also, we hope to make
the language relatively simple and user-friendly so that anyone, regardless of coding experience, can design with it.

2 Design Principles

This language is guided by simplicity and clarity to keep the non-technical user in mind. We also want the language
to translate naturally from the physical art of bracelet making (ex. a double right knot = RR, a right-left knot = RL,
etc.). The language would be flexible enough to allow the user’s creativity to shine, while remaining relatively straight
forward and easy to understand.

We also created a graphical interface that simulates a digital bracelet with the user’s finished pattern at the end, so they
can really visualize what it would look like. We definitely also want to provide support for users in the cases of invalid
expressions, syntax errors, or other things like that.

3 Example Programs

To run these example programs, type dotnet run ../../examples/example-1.fbp onthe command line
from inside the lang directory. Replace ”1” with 2" or 3" to try the other examples. The code and output is shown
below. An SVG file matching the name of the pattern is created in the output directory in the main directory, which
can be opened in a browser to produce an image.

Below, we show the code needed to produce the examples (right side of first image), the desired pattern (created in
Powerpoint; see left side of first image), and the corresponding evaluator output and SVG images produced.

Example 1: Two row pattern

Angela + Catherine DigiWeave: Language Specification May 19, 2020

ROW

1

2
(name Z2ROWS)

3 (strings 6 CornflowerBlue
CornflowerBlue Coral Coral

)

4 (repeat 6 AARRR)

5

6

Evaluator output:

Pattern Name: 2ROWS

Row

1 CornflowerBlue >> CornflowerBlue >> CornflowerBlue >> CornflowerBlue >>
CornflowerBlue >>

2 CornflowerBlue >> CornflowerBlue >> CornflowerBlue >> CornflowerBlue >>
CornflowerBlue >>

3 Coral >> Coral >> Coral >> Coral >> Coral >>

4 Coral >> Coral >> Coral >> Coral >> Coral >>

5 BurlyWood >> BurlyWood >> BurlyWood >> BurlyWood >> BurlyWood >>

6 BurlyWood >> BurlyWood >> BurlyWood >> BurlyWood >> BurlyWood >>

SVG file output:

CSCI 334: Principles of Programming Languages 2 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

2ROWS

ROW 1 2 3 4 S 6

|
H

\

!lllllllii
H H H

\

H

SEERS
SREte

!
H

CSCI 334: Principles of Programming Languages 3 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

Example 2: Arrow pattern

ROW

1 (name ARROW)
(strings 8

2 LightSeaGreen LightSeaGreen
LightSeaGreen LightSeaGreen

)

3
(repeat 2 AABB _AAB)

1

Evaluator output:

Pattern Name: ARROW

1 LightPink >> _ LightSeaGreen >> _ LightSeaGreen << _ LightPink <<
2 _ LightPink >> _ LightSeaGreen >> _ LightPink <<

3 LightSeaGreen >> _ LightPink >> _ LightPink << _ LightSeaGreen <<
4 _ LightSeaGreen >> _ LightPink >> _ LightSeaGreen <<

SVG file output:

ARROW

ROW 2 3 6 7

CSCI 334: Principles of Programming Languages 4 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

Example 3: Heart pattern

i BLLEL

1
(name HEART)
2
(strings 8
3
)
4
CABD
ARAB
3 BABRA
A A B
6 A ABB
A RAB
CABD
7 DAC.
8
/ \
Evaluator output:
Pattern Name: HEART
Row
1 PeachPuff > _ PeachPuff >> _ PeachPuff << _ PeachPuff <
2 _ PaleVioletRed >> _ PeachPuff >> _ PaleVioletRed <<
3 PaleVioletRed << _ PaleVioletRed >> _ PaleVioletRed <<
PaleVioletRed >>
4 _ PeachPuff >> _ PaleVioletRed >> _ PeachPuff <<
5 PaleVioletRed >> _ PeachPuff >> _ PeachPuff << _ PaleVioletRed <<
6 _ PaleVioletRed >> _ PeachPuff >> _ PaleVioletRed <<
7 PeachPuff > _ PaleVioletRed >> _ PaleVioletRed << _ PeachPuff <
8 _ PeachPuff < _ PaleVioletRed >> _ PeachPuff >
SVG file output:

CSCI 334: Principles of Programming Languages 5 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

HEART

ROW 2 4 5 7

AN
/

CSCI 334: Principles of Programming Languages 6 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

4 Language Concepts

To write programs in this language, a user should understand the basic properties of a friendship bracelet. Essentially,
a bracelet is made up of a repeated pattern, which is made up of rows, each of which consists of a certain combination
of knots. There are 4 main knots: the double right knot, double left knot, right-left knot, and left-right knot. Rows can
be repeated to form the pattern, or they can all be unique combinations of knots.

Each bracelet also has a specified number of strings, each of which can be any color. The strings have an original order
to start the pattern, but usually will move around as rows are constructed (based on which knots are used and in what
order). See example programs above for a basic visualization of these concepts.

5 Syntax

The syntax of this language is essentially as follows:
e The overall program creates a pattern. A pattern is made up of:

— Properties which consist of

* The pattern’s name
* 14 strings, each having a specified color and start position.

— 1+ Blocks of 1+ rows. Blocks may or may not be repeated. In examples 1 and 2, there is 1 repeated block.
In example 3, there is 1 block but it is not repeated.

* Each row consists of 1+ knots, which are specified by one of the 4 valid knots (see the Language
Concepts section above for more details). To simplify things, the user will use the characters ”A” ”B”
”C” and ”D” to denote the knots, and ”_" to skip a string (aka. basically an “empty knot™).

e In short, a pattern must contain a name, strings (with assigned colors), and at least 1 row of knots.

A diagram summarizing the syntax is given below.

PATTERN
PROPERTIES (BLOCK)+
NAME (STRING)+ (ROW)+
! l
POS:COLOR (KNOT) +
!
RR/LL/RL/LR/SKIP

CSCI 334: Principles of Programming Languages 7 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

Here is the equivalent, formal definition of the grammar in Backus-Naur form:

<pattern> ::= <name> <strings> <comp>+
<name> ::= string
<strings> ::= num <string>+
<comp> ::= <block>
| (repeat num <comp>+)
<string> ::= any valid alphanumeric string
<block> ::= <row>+
<row> ::= <knot>+
<knot> ::= RR | LL | RL | LR | SKIP
<num> = n in Z+ (aka. any positive integer)

6 Semantics

i. What are the primitive kinds of values in your system? For example, a primitive might be a number, a string, a
shape, a sound, and so on.

Primitives could be a string representing the name of the pattern, the colors for each of the strings, and the five
types of valid knots (counting the SKIP option). The numbers used to specify how many strings there are or how
many times to repeat something are also primitives.

Syntax Abstract Syntax Type Prec./Assoc. Meaning
N is any positive integer. A
primitive used in the repeat

n n of int int n/a .
and setup operations (see be-
low for more details).
Kuot = RR | LL | thes five chars 1o represen
A7, 7B, 7C7, D7 RL|LR | SKIP of char n/a the four valid knots and the
char . .
skip knot in the pattern.
Rows are lists of knots.
» » . . Since knots are basically
ABCD._ Row of Knot list Knot list n/a

chars, rows are sequences of
chars, or strings.

Blocks are lists of rows.
"AAA BBB” Block of Row list Row list n/a Blocks are a type of Comp,
short for component.

The repeat operation will
process the specified Comp

RepeatOp of int *

(repeatn CC.... €) Comp list int * Comp list Vieft n times. RepeatOp itself is
also a type of Comp.
The name operation as-
’ ’ . . signs the current friendship
(name “Name”) NameOp of string string 1/1eft

bracelet pattern the name
specified by the given string.
The setup operation allows
the user to specify the num-
int * string list 1/left ber and colors of strings to
be used in the pattern. Col-
ors are inputted as strings.

99 99

(strings n ’color” ”color” | SetupOp of int *
... “color™) string list

Table 1: Semantics of our language.

CSCI 334: Principles of Programming Languages 8 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

ii. What are the “actions” or compositional elements of your language? In other words, how are values used? For
example, your system might have “commands” like “move pen” or compositional elements like “sequence of
notes.”

The main compositional elements are the rows of knots and blocks of rows. Some actions might be: ”(name
XXX)” to name the pattern, ”(strings num color_1 color_2 ... color_n)” to specify the number and colors of
strings, and ”(repeat num XXX)” to repeat rows/blocks of the pattern. None of these operations can be combined
with each other (but you can repeat a repeat operation), so precedence is not an issue.

iii. How is your program represented? If it helps you to think about this using ML algebraic data types, please use
them. Otherwise, rough sketches such as class hierarchy drawings are fine.

The program could be represented with a hierarchy similar to what’s depicted in the syntax diagram above. The
name of the pattern and number/colors of the strings could be saved as variables. A row could be represented as a
list of “knots” (after declaring this type) and a block could be represented as a list of “rows” (after declaring this
a type too). The pattern would then be made up of blocks and repeat operations, which could be represented as a
tuple of (1) the number of times to repeat and (2) the thing to repeat (ex. (2, row: AAAA)).

iv. How do elements “fit together” to represent programs as abstract syntax? For the three example programs you
gave earlier, provide sample abstract syntax trees.

See below for sample ASTs. Note the examples from earlier have different colored strings, but their patterns and
overall ASTs are otherwise identical to these.

AST for Example 1:

: blue
: blue
: purple
: purple
: pink
: pink |knot: RR‘ ‘knot: RR‘ |knot: RR‘

o) U1 = W N

CSCI 334: Principles of Programming Languages 9 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

AST

for Example 2:

1: orange
2: yellow
3: yellow
Y knot: LL||knot: SKIP
4: orange = —
S5: orange | knot: SKIP | | knot: SKIP | | knot: RR ’/ :
6: yellow < 3
75 el knot: RR | knot: Lt | | knot: sk1P| | |knot: SKIP|
8: orange
g knot: SKIP knot: RR
AST for Example 3:
N
e N\, I — / ~ —
E] (e
: ‘knot:/RL knot : gklp| ‘knot:/ LL knot:‘SKIP| [knot: rr TemeiEe s1p | ‘kn;t: RL| [knot: SK1e |
HEART 1: gray
2: pink | [knot: sk1P| [knot: RR| [knot: skip| [knot: RR| [knot: skiP| [knot: RR| [knot: skip| [knot: LR]
j: i [xnot: RR| [knot: skrp| [knot: RR| [knot: skrp| [knot: LL] [knot: sk1P| [knot: BR| [knot: skiP|
5. gi:k [xnot: skrp| [knot: RR| [knmot: skip| [kmot: RR| [knmot: skip| [knot: RR| [knot: skrp| [knot: RR|
S: gray [knot: LL| [knot: skrp| [knot: LL| [knmot: skrp| [knot: R| [knot: skrp| [knot: LL| [knot: skir|
g gi:y [knot: skrp| [knot: L] [knot: skip| [knot: LL] [knot: skip| [knot: LL| [knot: skrp| [knot: ri|
[knot: 1R| [knot: skrp| [knmot: RR| [knot: skrP| [knmot: LL] [knot: skrp| [knot: LR| [knot: sKIP|

Note: All knots are at same level, not at different levels, but to save space, they are stacked in this diagram.

v. How is your program evaluated? In particular,

Do programs in your language read any input?

The programs themselves can be inputted as files so the user doesn’t have to type everything on the command
line. Otherwise, there isn’t any input read in by our programs.

What is the effect (output) of evaluating a program?

The output will be the pattern created by the user. Currently, the language outputs an SVG file generated by
the user’s program, which they can then open as an html file.

Evaluation is usually conceived of as a depth-first, post-order traversal of an AST. Describe how such a
traversal yields the effect you just described and provide illustrations for clarity. Demonstrate evaluation for
at least one of your example programs.

A depth-first, post-order traversal of the AST would yield the output described above because this would
essentially first evaluate the name and number/colors of strings in the properties subtree, which is needed
to evaluate the rest of the pattern. Then, we would evaluate the knots in each row, then the rows in each
block, then the blocks themselves, at which point the pattern can be produced since the blocks subtree is
now evaluated in full too.

CSCI 334

: Principles of Programming Languages 10 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

Here is how evaluation would work for example program 1 (again, the colors are different here, but nothing
else should be impacted):

Step one:
1. (name 2ROWS)

(::) 1: blue
2: blue
3: purple
5: pink
6: pink ‘knot: RR‘ ‘knot: RR‘ ‘knot: RR‘

Step two:

1. (name 2ROWS)
2. (strings 6 blue blue
purple purple pink pink)

blue
blue
purple
purple
pink
pink ‘knot: RR‘ ‘knot: RR‘ ‘knot: RR‘

o U W N

Step three:

CSCI 334: Principles of Programming Languages 11 Spring 2020

Angela + Catherine DigiWeave: Language Specification May 19, 2020

1. (name 2ROWS)

2. (strings 6 blue blue
purple purple pink pink)

3. (repeat 6 AAAAA)

blue
blue
purple
purple
pink

pink ‘knot: RR‘ ‘knot: RR‘ ‘knot: RR‘

o U W N

Step four:

1. (name 2ROWS)

2. (strings 6 blue blue
purple purple pink pink)

3. (repeat 6 AAAAA)

@ Parsing complete.

blue
blue
purple
purple
pink
pink ‘knot: RR‘ ‘knot: RR‘ ‘knot: RR‘

o U W IN

7 Remaining Work

We have finished implementing all the necessary operations and data types for our language, and our output is con-
verted to SVG files. We also added some error checking features to safeguard the user against unsafe operations;
for example, we ensure that the user puts the correct number of knots in each row, which should be the number of
strings minus one, by producing the correct error messages. In the future, we might consider figuring out how to host
our language online (ex. embedding it on a web page) so that users can more easily create their patterns :). Another
optimization might be allowing other types of knots/specification of the direction of a row (ex. starting from left vs.
right) to enable the creation of more advanced friendship bracelet patterns.

CSCI 334: Principles of Programming Languages 12 Spring 2020

	Introduction
	Design Principles
	Example Programs
	Language Concepts
	Syntax
	Semantics
	Remaining Work

