
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 25: C++ / wrap up

Topics

Why OO matters

Turing tarpits

Why PL matters

SCS

What’s up with C++?

Announcements

1. Senior thesis presentations in Wege auditorium:
a. Monday, May 16, 9:30am-12:10 (2 credits!)
b. Monday, May 16, 1:00-3pm (2 credits!)

2. Ward prize presentations for best class project in
Wege auditorium: 
Tuesday, May 17, 2:30-4pm

Announcements

1. No colloquium this week.
2. Instead: end of year ice cream social on Friday.

Your to-dos

1. Lab 10, “mostly working” checkpoint, due
Sunday 5/15

Ingalls Test for Extensibility

• The test is about the ability to extend software after it has

already been designed and written.

i.e., the “rectangle test”

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

yes, it’s object-oriented!

Java, Python, etc. pass the rectangle test

Turing Tarpit

A Turing tarpit is a programming language flexible enough
to do anything (i.e., it is Turing equivalent) while also being
difficult to learn and use for everyday tasks.

Examples:
• Turing machines
• The Lambda Calculus
• Breph
• C?

“Beware of the Turing tar-pit in which everything is possible
but nothing of interest is easy.” —Alan Perlis

Why I like OO

OO is fundamentally based on the idea that people
matter in the design of a programming language.

How do we minimize human effort while designing
large pieces of software?

The right choice depends on the problem

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

• FP makes it easy to add operations (rows above).

• OOP makes it easy to add data (columns above). Williams College, January 9, 2017

Daniel Barowy

Programming of the People, by
the People, and for the People

Spock, what is that 
thing out there?!

Hang on, let me fire up emacs.

There are no programmers.In the future:

A Bicycle for the Mind

This work is not done yet. Evaluation Forms

(all of these are anonymous)

We listen carefully to what you say in these
forms. Please take your time and write

thoughtful responses.

Your feedback is very valuable to us!

Purpose of SCS Forms

“[T]he SCS provides instructors with feedback regarding their
courses and teaching. The faculty legislation governing the
SCS provides that SCS results are made available to the
appropriate department chair, the Dean of the Faculty, and at
appropriate times, to members of the Committee on
Appointments and Promotions (CAP). The results are
considered in matters of faculty reappointment, tenure, and
promotion.”

—Office of the Provost, Williams College

Purpose of “Blue Sheets”

Student comments on the blue sheets […] are solely for your
benefit. They are not made available to department or program
chairs, the Dean of the Faculty, or the CAP for evaluation
purposes.

—Office of the Provost, Williams College

Blue sheet prompts:

* Did you look forward to coming to class?

* What course topic did you enjoy the most?

* What course topic did you least enjoy? Do you think that it
was valuable to learn anyway?

* Are there other aspects of the course that you liked or
disliked? (E.g., office hours, TAs, assignments, course
structure, meeting times, etc.) Feel free to suggest
alternative approaches!

Dispatch

method(arg1,…)

• Dispatch is how a function call works.

• We’ve seen many examples this semester.

• Ordinary functions can be dispatched statically, meaning that

deciding what to do can be determined at compile time.

Dynamic Dispatch

x.method(arg1,…)

• Dynamic dispatch is the OO mechanism for polymorphism.

• OO functions are dispatched dynamically, because they

depend on data.

• This means that what they do must be determined at runtime.

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object selector

message{

Dynamic Dispatch
• Dynamic dispatch is an algorithm for finding a the

implementation for a given selector (i.e., method).

@value

…

Number object Number class Template

@value

…

Method dictionary
getValue

squee

code
code code

@value

…

1 Call x.getValue

2

2 x.getValue message dispatched to x

3 x.getValue message forwarded to Number

4 x.getValue message lookup in method dictionary

3

5 x.getValue executed.

Number object Number class Template

@value

…

code
5

Method dictionary
getValue

squee

4

C++
Efficient object oriented programming.

“Only pay for what you use”

Consider the following Java program.

class Math {

public static double mean(int[] nums, int len){

 int sum = 0;

 for (int i = 0; i < len; i++) {

 sum += nums[i];

 }

 return (double) sum / len;

}

}

It uses no dynamic dispatch.

In fact, it barely uses any objects at all.

But Java still does a lot of work anyway…
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time performance monitor & compiler (JIT)

2. load first class definition (the one with main)
a. verify bytecode for runtime safety

3. load all class defs for linked code (e.g., stdlib)
a. verify, if necessary

4. allocate space for static variables
5. initialize static variables
6. execute main

a. repeat loading, linking, verifying, allocation, and initialization steps as
needed.

b. periodically run the garbage collector
c. run the JIT constantly, in a separate thread

x86

perfeval

JIT-Compilation

input

movf 0x1233, fp2

mulf #60.0, fp2

movf $8(sp), fp1

addf fp2, fp1

movf fp1, $12(sp)

new program

AST

output

comp

perf

comp

eval

x86

JIT-Compilation

input

movf 0x1233, fp2

mulf #60.0, fp2

movf $8(sp), fp1

addf fp2, fp1

movf fp1, $12(sp)

new program

AST

output

comp

perf
eval

x86

JIT-Compilation

input

movf 0x1233, fp2

mulf #60.0, fp2

movf $8(sp), fp1

addf fp2, fp1

movf fp1, $12(sp)

new program

AST

output

comp

perf
eval

x86

JIT-Compilation

input

AST

output

movf 0x1233, fp2

mulf #60.0, fp2

movf fp1, $12(sp)

new program

C++: “Only pay for what you use”

What does this mean?

class Math {

public static double mean(int[] nums, int len){

 int sum = 0;

 for (int i = 0; i < len; i++) {

 sum += nums[i];

 }

 return (double) sum / len;

}

}

C++: “Only pay for what you use”

What does this mean?

In C++, the “no class” program is as fast as C
Without classes, C++ is essentially C

double mean(int nums[], int len) {

 int sum = 0;

 for (int i = 0; i < len; i++) {

 sum += nums[i];

 }

 return (double) sum / len;

}

(demo OOP version)

C++: Only Pay for What You Use

(demo OOP version)

C++: Only Pay for What You Use

The version we came up with still doesn’t pay
for OO because it wasn’t polymorphic!

C++ does OO efficiently

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

code
Method dictionary

honk

…

Superclass

C++ eliminates lookups by computing code locations at compile-time.
C++ copies any needed superclass method pointers into class

C++ static methods are just C procedures. No classes needed.

(demo polymorphic C++)

C++: Only Pay for What You Use Virtual Dispatch
Honkable object

vptr

Honkable vtable

honk

• Functions without the virtual keyword are just regular C
functions (that also have access to class instance data).

• C++ virtual dispatch does never searches as in SmallTalk;
vtable/instance variable offsets known at compile-time.

Honkable code

Virtual Dispatch (if I don’t override honk)
Honkable object

vptr

Honkable vtable

honk

Honkable code

Car object

vptr

color

cost

topSpeed

rust

Car code

honk

brake

Car vtable

Virtual Dispatch (if I do override honk)
Honkable object

vptr

Honkable vtable

honk

Honkable code

Car object

vptr

color

cost

topSpeed

rust

Car code

honk

brake

Car vtable

Cost

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

O(1) method lookup

} for each class
or superclass

O(n) method lookup, where n is the number of
superclasses.

What to talk about in your
presentation / tutorial

Tutorial

https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html

Video presentation

• Teach yourself another programming language.
• Dig in to a problem that bugs you. 

(me: I’ve always wanted to write a computer algebra
solver)

• Keep playing with your project! It’s yours! (and you
should show it off to interviewers)

• Most of all, do something that excites you.

Next steps 
(aka, some things to do over the summer)

Recap & Next Class

This lecture:

Next lecture:

No next lecture! Have a great summer!

More OOP

Why PL

C++

