Topics
CSCI 334:
Principles of Programming Languages

Program interpretation
Lecture 20: Program interpretation

Instructor: Dan Barowy
Williams

Your to-dos

1. Reading response, due Wednesday 4/27.

. . 0
2. Lab 9, due Sunday 5/1 (partner lab) What is a programming language*®

What is a programming language?

What is a programming language?
Employee

Name | Empld | DeptName

OEmpId>3000 Harry | 3415 | Finance

Sally 2241 | Sales

George | 3401 | Finance

Harriet | 2202 | Sales

Name | Empld DeptName
Harry | 3415 | Finance
George | 3401 | Finance

>
»

int main() {..}

What is a programming language?

(plus 1 2)

What is a programming language?

What is a programming language?

2 ;:mﬁﬁ‘.&@
.evaluator]
< A

| ——

R e

¥

Program Interpreter

Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly interprets code, often in the form of an abstract
syntax tree.

Example

372 + 1

/0\
AO
© 0

Example

372 + 1
N

AA"
© 0

Eager evaluation: usually a post-order traversal of an AST.

Example
322 + 1
N Af’\o
(3

(2]

Eager evaluation: usually a post-order traversal of an AST.

Example

322 + 1

A

(1]
\GAQ

Eager evaluation: usually a post-order traversal of an AST.

Example
322 + 1

o

(3

2]

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

3 Af\o

6 oY

Eager evaluation: usually a post-order traversal of an AST.

Example
322 + 1
\Af’\o
(3

(2]

Eager evaluation: usually a post-order traversal of an AST.

Example

322 + 1

“

A
© 0

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

P
© O

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

N

9 1
3 A/zo\o
© 0

Eager evaluation: usually a post-order traversal of an AST.

Example

322 +1

10

9 1
A
© 0

Eager evaluation: usually a post-order traversal of an AST.

This traversal is conveniently written as a recursive function.

pluslang

<expr> ::= (plus <expr> <expr>t)
| neN

(plus 1 2)

(plus 1 2 3 4 5)

(code)

Recap & Next Class

Today:

Program interpretation

Next class:
Testing

