Topics
CSCI 334:
Principles of Programming Languages

Program interpretation
Lecture 20: Program interpretation

Instructor: Dan Barowy
Williams

Your to-dos

1. Reading response, due Wednesday 4/27.
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2. Lab 9, due Sunday 5/1 (partner lab) What is a programming language*®




What is a programming language?

What is a programming language?
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Name | Empld | DeptName

OEmpId>3000 Harry | 3415 | Finance

Sally 2241 | Sales

George | 3401 | Finance

Harriet | 2202 | Sales

Name | Empld DeptName
Harry | 3415 | Finance
George | 3401 | Finance
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int main() {..}

What is a programming language?
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Program Interpreter

Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly interprets code, often in the form of an abstract
syntax tree.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

N

9 1
3 A/zo\o
© 0

Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.

This traversal is conveniently written as a recursive function.

pluslang

<expr> ::= (plus <expr> <expr>t)
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Recap & Next Class

Today:

Program interpretation

Next class:
Testing




