
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: HOFs / Type inference

Topics

Type inference

Higher order functions

Your to-dos

1. Lab 7, due Sunday 4/17 (partner lab)
2. Reading response, due Wednesday 4/20. Quiz



Mapping and Folding

map

Intuition:

map
List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

map

[2;8;22;4] 

|> List.map (fun x -> x + 1) 

|> List.map float 

|> List.map (fun x -> x / 3.3) 

|> List.sort

[0.9090909091; 1.515151515; 2.727272727; 

6.96969697]



fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr 
  (car 
    (cons 
      (cons ‘a ‘b) 
      (cons ‘c ‘d) 
    ) 
  ) 
)

evaluation

fold

Intuition:

fold left
List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4] 

acc = 0+1, [2;3;4] 

acc = 1+2, [3;4] 

acc = 3+3, [4] 

acc 6+4, [] 

returns acc = 10

fold right
List.foldBack 

  (fun x acc -> acc+x) [1;2;3;4] 0
[1;2;3;4], acc = 0 

[1;2;3], acc = 0+4 

[1;2], acc = 4+3 

[1] acc = 7+2 

[], acc = 9+1 

returns acc = 10



Try this at home!

• Write a function number_in_month that takes a list of dates 

(where a date is int*int*int representing year, month, 

and day) and an int month and returns how many dates are 

in month

• Use List.fold

let number_in_month(ds: Date list)(month: int) : int =

Type checking & type inference

Finally—cool things enabled 
by the lambda calculus!

type inference

Not everybody loves this part of PL.

I hope that you can appreciate the absence of magic.

Type checking

let f(x:int) : int = “hello” + x

(or, “how does my compiler know
that my expression is wrong?”)

  let f(x:int) : int = "hello" + x;; 
  -------------------------------^ 

stdin(1,32): error FS0001: The type 'int' does not 
match the type 'string'



A note about “curried” expressions

let f(a: int, b: int, c: char) : float = …

f is a:int * b:int * c:char -> float

let f(a: int)(b: int)(c: char) : float = …

let f a b c = …

f = λa.λb.λc.…

f is int -> int -> char -> float

Type checking

let f(x:int) : int = “hello” + x 

f = λx.“hello ” + x 

f = λx.(+ “hello ” x)

convert into λ expression
assume + = λx.λy.(x + y)

step 1: convert into lambda form

The purpose of this step is to make all of the parts of 
an expression clear

Type checking

f = λx.((+ “hello ”) x) 

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int

Type checking



step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise?  

Yes = error 

No = ok

3. if error, stop  

and report first 

mismatch

int → int → int @ string 

YES, TYPE ERROR

:int → int

Type checking Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f(x) = “hello ” + x

?

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm 
independently.

• Infers types from known  
data types and 
operations used.

• Depends on a step called 
“unification”.

• I will demonstrate 
informal method for 
unification; works for 
small examples

Hinley-Milner algorithm

1. Assign known types to each subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

b. Application constraints

3. Solve type constraints using unification.

Has three main phases:



Type inference

let f(x) = 5 + x 

f = λx.((+ 5) x)

step 1: convert to lambda AST

λ

@

@

x

x

+ 5

Type inference

let f(x) = 5 + x 

f = λx.((+ 5) x)

step 2: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

it is often helpful to have types in tabular form

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

Type inference

<expr> ::= <var> 

   |  λ<var>.<expr> 

   |  <expr><expr>

variable

function application
abstraction

Three rules, each corresponding to a kind 
of λ expression.

step 3: generate constraints

Type inference



3.1. <var> constraint

No constraint.

3.2. abstraction constraint

“left triangle rule”

λ

<var> <expr>

λ<var>.<expr>

λ

:α :β

:γ

Constraint: If the type of <var> is α and the type of <expr> is β, 
and the type of λ is γ, then the constraint is γ = α → β.

3.3. application constraint

“right triangle rule”

@

<expr1> <expr2>

<expr><expr>

@

:α :β

:γ

Constraint: If the type of <expr1> is α and the type of <expr2> is 
β, and the type of @ is γ, then the constraint is α = β → γ.

Abstraction: If the type of <var> is a and the type of <expr> is b, 
and the type of λ is c, then the constraint is c = a → b.

Application: If the type of <expr1> is a and the type of <expr2> is 
b, and the type of @ is c, then the constraint is a = b → c.

constraints summary

@

:α :β

:γ

@

:α :β

:γ



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Start with the topmost unknown.  What do we know about r?
int → int → int = int → r 
r = int → int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t  
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t 
u = s → t

step 3: unify

What do we know about s and t?
int → int = s → t 
s = int 
t = int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t 
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
u = int → int

step 3: unify

What do we know about u?

u = int → int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
u = int → int

step 3: unify

Type inference

Eliminate u from constraint.



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Sometimes unknown types remain.

Type inference

An unknown type means that the function is polymorphic.

Completed type inference

let f x = 5 + x 

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int

Recap & Next Class

Today:

Next class:
More type inference

Type inference
Higher order functions in F#

Parsing


