
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: HOFs / Type inference

Topics

Type inference

Higher order functions

Your to-dos

1. Lab 7, due Sunday 4/17 (partner lab)
2. Reading response, due Wednesday 4/20. Quiz

Mapping and Folding

map

Intuition:

map
List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

map

[2;8;22;4]

|> List.map (fun x -> x + 1)

|> List.map float

|> List.map (fun x -> x / 3.3)

|> List.sort

[0.9090909091; 1.515151515; 2.727272727;

6.96969697]

fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

fold

Intuition:

fold left
List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4]

acc = 0+1, [2;3;4]

acc = 1+2, [3;4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

fold right
List.foldBack

 (fun x acc -> acc+x) [1;2;3;4] 0
[1;2;3;4], acc = 0

[1;2;3], acc = 0+4

[1;2], acc = 4+3

[1] acc = 7+2

[], acc = 9+1

returns acc = 10

Try this at home!

• Write a function number_in_month that takes a list of dates

(where a date is int*int*int representing year, month,

and day) and an int month and returns how many dates are

in month

• Use List.fold

let number_in_month(ds: Date list)(month: int) : int =

Type checking & type inference

Finally—cool things enabled
by the lambda calculus!

type inference

Not everybody loves this part of PL.

I hope that you can appreciate the absence of magic.

Type checking

let f(x:int) : int = “hello” + x

(or, “how does my compiler know
that my expression is wrong?”)

 let f(x:int) : int = "hello" + x;;
 -------------------------------^

stdin(1,32): error FS0001: The type 'int' does not
match the type 'string'

A note about “curried” expressions

let f(a: int, b: int, c: char) : float = …

f is a:int * b:int * c:char -> float

let f(a: int)(b: int)(c: char) : float = …

let f a b c = …

f = λa.λb.λc.…

f is int -> int -> char -> float

Type checking

let f(x:int) : int = “hello” + x

f = λx.“hello ” + x

f = λx.(+ “hello ” x)

convert into λ expression
assume + = λx.λy.(x + y)

step 1: convert into lambda form

The purpose of this step is to make all of the parts of
an expression clear

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise?  

Yes = error 

No = ok

3. if error, stop  

and report first 

mismatch

int → int → int @ string

YES, TYPE ERROR

:int → int

Type checking Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f(x) = “hello ” + x

?

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm
independently.

• Infers types from known  
data types and
operations used.

• Depends on a step called
“unification”.

• I will demonstrate
informal method for
unification; works for
small examples

Hinley-Milner algorithm

1. Assign known types to each subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

b. Application constraints

3. Solve type constraints using unification.

Has three main phases:

Type inference

let f(x) = 5 + x

f = λx.((+ 5) x)

step 1: convert to lambda AST

λ

@

@

x

x

+ 5

Type inference

let f(x) = 5 + x

f = λx.((+ 5) x)

step 2: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

it is often helpful to have types in tabular form

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

Type inference

<expr> ::= <var>

 | λ<var>.<expr>

 | <expr><expr>

variable

function application
abstraction

Three rules, each corresponding to a kind
of λ expression.

step 3: generate constraints

Type inference

3.1. <var> constraint

No constraint.

3.2. abstraction constraint

“left triangle rule”

λ

<var> <expr>

λ<var>.<expr>

λ

:α :β

:γ

Constraint: If the type of <var> is α and the type of <expr> is β,
and the type of λ is γ, then the constraint is γ = α → β.

3.3. application constraint

“right triangle rule”

@

<expr1> <expr2>

<expr><expr>

@

:α :β

:γ

Constraint: If the type of <expr1> is α and the type of <expr2> is
β, and the type of @ is γ, then the constraint is α = β → γ.

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

Application: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

constraints summary

@

:α :β

:γ

@

:α :β

:γ

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Start with the topmost unknown. What do we know about r?
int → int → int = int → r
r = int → int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

What do we know about s and t?
int → int = s → t
s = int
t = int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

What do we know about u?

u = int → int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

Type inference

Eliminate u from constraint.

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Sometimes unknown types remain.

Type inference

An unknown type means that the function is polymorphic.

Completed type inference

let f x = 5 + x

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int

Recap & Next Class

Today:

Next class:
More type inference

Type inference
Higher order functions in F#

Parsing

