
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 15: ML, part 2

Topics

Algebraic data types

Option type

Pattern matching

Your to-dos

1. Lab 6, due Sunday 4/10 (partner lab)
2. Reading response, due Wednesday 4/13.

Announcements
Colloquium on Friday.

Friday, April 8 @ 2:35pm
Wege Hall – TCL 123
Perception and Context in Data Visualization
Jordan Crouser, Smith College
Visual analytics is the science of combining interactive visual interfaces
and information visualization techniques with automatic algorithms to
support analytical reasoning through human-computer interaction.
People use visual analytics tools and techniques to synthesize
information and derive insight from massive, dynamic, ambiguous, and
often conflicting data… and we exploit all kinds of perceptual tricks to
do it! In this talk, we’ll explore concepts in decision-making, human
perception, and color theory as they apply to data-driven
communication. Whether you’re an aspiring data scientist or you’re just
curious about the mechanics of how data visualization works under the
hood, stop by and take your pre-attentive processing for a spin.

Announcements

•ACM TechTalk: “Visual Data Analysis: Why?
When? How?” 
Organized by Prof. Kelly Shaw and CoSSAC. 
Wednesday, April 13 from 7-7:45pm in TBL 211. 
Extra special snacks provided by CoSSAC
afterward in the Eco Cafe.

Announcements

•Field trip to WCMA, Tuesday, April 12. 
Bring your handout from our first trip.

•Fixed a handful of typos in the F# chapters of the
course packet— see updated PDF online.

•Today’s office hours end at 5pm (sorry!)

 A square divided horizontally and vertically
 into four equal parts, each with a different
 color and line direction.

 Red, yellow, blue, black pencil

A small addendum to lab 6.

More Inspiration for Projects

Pattern Matching

Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

A pattern is built from

•values,

• (de)constructors,

•and variables

Tests whether values match “pattern”

If yes, values bound to variables in pattern

Pattern matching Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

Activity: Pattern matching on integers

Write a function listOfInts that returns a list
of integers from zero to n.

Oops! This returns the list backward.

Let’s flip it around.

let rec listOfInts n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)
 li n |> List.rev

… by defining a function inside our function.

• Remember, a list is one of two things:
– []
– <first elem> :: <rest of elems>
– E.g., [1; 2; 3] = 1::[2,3] = 1::2::[3]
= 1::2::3::[]

• Can define function by cases…

Pattern matching on lists

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cartesianProduct xs ys =
 match xs,ys with
 | [] ,_ -> []
 | _ ,[] -> []
 | x::xs’,_ ->
 let zs = ys |> List.map (fun y -> (x,y))
 zs @ cartesianProduct xs’ ys

Activity: Pattern matching on tuples
Write a function that computes the Cartesian product
of two sets, represented by lists:

A × B = { (a,b) | a ∈ A and b ∈ B }

Hint: I find it helpful to think about base cases first.

• Patterns can be used in place of variables
• Most basic pattern form
– let <pattern> = <exp>

• Examples
– let x = 3
– let tuple = ("moo", “cow")
– let (x,y) = tuple
– let myList = [1; 2; 3]
– let w::rest = myList
– let v::_ = myList

Patterns in declarations

Algebraic Data Types*

*not to be confused with Abstract Data Types!

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

• Invented by Rod Burstall at
University of Edinburgh in ‘70s.

• Part of the HOPE programming
language.

• Not useful without pattern matching.
• Like peanut butter and chocolate,

they are “better together.”

Algebraic Data Types

A “move” function in a game

north

south

eastwest

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

A “move” function in a game (Java)

public … move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

type Direction =
 North | South | East | West;

let move coords dir =
 match coords,dir with
 |(x,y),North -> (x,y - 1)
 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (Java)
Discriminated Union (sum type)

• Pattern match to extract parameters

type Shape =
 | Rectangle of float * float
 | Circle of float

let s = Rectangle(1.0,4.0)
match s with
| Rectangle(w,h) -> …
| Circle(r) -> …

Parameters

• Names are really only useful for initialization, though.

let s = Rectangle(height = 1.0, width = 4.0)

Named parameters

type Shape =
 | Rectangle of width: float * height: float
 | Circle of radius: float

type MyList<'a> =
 | Empty
 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =
| None
| Some of 'a

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (float quot/float div)

Avoiding errors with patterns

> divide 6 7;;

val it : float option = Some 0.8571428571

> divide 6 0;;

val it : float option = None

>

Avoiding errors with patterns

• Why option?

• option is a data type; 

not handling errors is a static type error!

option type
Recap & Next Class

Today:

Next class:
WCMA!

Algebraic data types
Option type

Pattern matching

