CSCI 334:
Principles of Programming Languages
Lecture 11: Higher Order Functions
Instructor: Dan Barowy
Williams

Your to-dos

1. Reading response, due Wednesday $3 / 9$.
2. Lab 5, due Sunday $3 / 13$ (partner lab) (last one before midterm!)

Topics

Higher Order Functions
Computability, part 1

Three amazing concepts from LISP

- First-class functions
- Higher-order functions
-map
- fold
- Garbage collection

"first class" function

Function definitions are values in a functional programming language

Like a for loop, but without mutable variables

```
(mapcar (lambda (x) (+ x 1) `(1 2 3 4 5))
```


Activity

Write a function (using mapcar) that replaces the number 3 in a list with the
number 6

```
(mapcar #'my-replace '(1 2 3 4 5 6))
    '(1 2 6 4 5 6)
```


Activity

Write a function (using mapcar) that replaces the number 3 in a list with the number 6

```
(defun my-replace (x)
    (cond
                                    ((equal x 3) 6)
                                    (t x)
        )
    )
(mapcar #'my-replace '(1 2 3 4 5 6))
    '(1 2 6 4 5 6)
```


fold right

```
(reduce #'+ '(1 2 3):initial-value 0
    :from-end t)
```



```
    '(1 2 3), acc= = 0
    '(1 2), acc= = +3
    '(1), acce=2+3
    nil acc=5+1
    returns acc=6
```


Activity

list length using reduce
(length-list '(1 243456$)$) $\rightarrow 6$

fold

structural recursion \rightarrow fold it!
(in a nutshell: any problem that recurses on a subset of input)

list length

tree height

evaluation

Activity

list length using reduce

```
(defun mycount (acc x) (+ acc 1))
```

(defun length-list (xs)
(reduce \#'mycount xs
:initial-value 0)
)

That's pretty much it!

- See "LISP Notes" for all the syntax you need to know on course webpage

Automatic Memory Management

Memory management

- C :

When you want to use a variable, you have to allocate it first, then decallocate it when done.

MyObject *m = malloc(sizeof(MyObject));
$m->f o o=2 ;$
$m->b a r=3 ;$
... do stuff with m ..
free (m) ;

- Java:

You barely need to think about this at all.
MyObject m = new MyObject(2,3);
... do stuff with m ...

- Same with LISP!
(cons 2 3)

Sharing data

- Which is the result of evaluating

```
(cons (cons `A `B) (cons `A `B)) ?
```


Garbage collection

A garbage collection algorithm is an algorithm that determines whether the storage, occupied by a value used in a program, can be reclaimed for future use. Garbage collection algorithms are often tightly integrated into a programming language runtime.

1. Mark reachable cells

2. Mark reachable cells

3. Mark reachable cells

4. Free ("sweep") unreachable cells

5. Mark reachable cells

6. Clear tags

Computability
example
valid inputs are integers

$$
\begin{gathered}
\mathrm{P}(\mathrm{x}) \text { is: } \\
\mathrm{f}(\mathrm{x})=\mathrm{x}+5 \\
\text { computable? } \\
\text { yes. }
\end{gathered}
$$

Computability

i.e., what can and cannot be done with a computer
A function f is computable if there is a program P that computes f.
In other words, for any (valid) input x, the computation $P(x)$ halts with output $f(x)$.

Computability
example
valid inputs are integers

$$
\begin{gathered}
\mathrm{P}(\mathrm{x}) \text { is: } \\
\mathrm{f}(\mathrm{x})=5 / \mathrm{x} \\
\text { computable? } \\
\text { yes, partially. }
\end{gathered}
$$

Total Function

$f: A \rightarrow B$ is a subset $f \subseteq A \times B$ subject to

1. for every $a \in A$, there is $a b \in B$ with $\langle a, b\rangle \in f \quad$ totality
2. if $\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{f}$ and $\langle\mathrm{a}, \mathrm{c}\rangle \in \mathrm{f}$ then $\mathrm{b}=\mathrm{c}$ single valued

$$
\begin{gathered}
e . g, \\
f(x)=x+5
\end{gathered}
$$

Partial Function

$f: A \rightarrow B$ is a subset $f \subseteq A \times B$ subject to

1. for every $a \in A$, there is a beB with $\langle a, b) f$ totality
2. if $\langle a, b\rangle \in f$ and $\langle a, c\rangle \in f$ then $b=c \quad$ single valued

$$
\begin{gathered}
\mathrm{e} . \mathrm{g}, \\
\mathrm{f}(\mathrm{x})=5 / \mathrm{x}
\end{gathered}
$$

Intuition: total function

For every element in x , there is a corresponding element in y . x maps to at most one element in y .

x still maps to at most one element in y , however, there is not a y for every x .

The graph of a function

$$
f(x)=x+5
$$

$$
\{<x, x+5>\mid x \in \mathbb{Z}\}
$$

$\{<x, x+5>\mid x$ is an integer $\}$

The graph is not a picture!

Recap \& Next Class

Today:

Higher order functions
Computability, part 1

Next class:
More computability

