
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: Higher Order Functions

Topics

Higher Order Functions

Computability, part 1

Your to-dos

1. Reading response, due Wednesday 3/9.
2. Lab 5, due Sunday 3/13 (partner lab) 

(last one before midterm!)

Three amazing concepts from LISP

•First-class functions

•Higher-order functions

•map

•fold

•Garbage collection

a function

+1

3

4

“first class” function

Function definitions are values in a

functional programming language

a function

+1

3

4

a function

map

1

3

2

4

5

1

3

2

4

5

Like a for loop, but without mutable variables

(mapcar (lambda (x) (+ x 1) ‘(1 2 3 4 5))

Intuition:

map

map

‘(1 2 3 4 5)
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

‘(2 3 4 5 6)

Write a function (using mapcar) that replaces the
number 3 in a list with the
number 6

(mapcar #’my-replace ’(1 2 3 4 5 6))

 ’(1 2 6 4 5 6)

Activity
Write a function (using mapcar) that replaces the
number 3 in a list with the
number 6
 (defun my-replace (x)

 (cond

 ((equal x 3) 6)

 (t x)

)

)
(mapcar #’my-replace ’(1 2 3 4 5 6))

 ’(1 2 6 4 5 6)

Activity

fold

Intuition:

fold left
(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

acc = 0+1, ‘(2 3)

acc = 1+2, ‘(3)

acc = 3+3, nil

returns acc = 6

fold right
(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

‘(1 2), acc = 0+3

‘(1), acc = 2+3

nil acc = 5+1

returns acc = 6

what does this print?

(reduce #'append '((2) (2))

 :initial-value '(w i l l i a m s))

how about?

(reduce #'append '((2) (2))

 :initial-value '(w i l l i a m s)

 :from-end t)

fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr

 (car

 (cons

 (cons ‘a ‘b)

 (cons ‘c ‘d)

)

)

)

evaluation

Activity

list length using reduce

(length-list ‘(1 2 3 4 5 6)) ↠ 6

Activity

list length using reduce
(defun mycount (acc x) (+ acc 1))

(defun length-list (xs)

(reduce #'mycount xs

 :initial-value 0)

)

That’s pretty much it!

• See “LISP Notes” for all the syntax you need to

know on course webpage
Automatic Memory Management

Memory management

• C:  

When you want to use a variable, you have to allocate

it first, then decallocate it when done.
MyObject *m = malloc(sizeof(MyObject));

m->foo = 2;

m->bar = 3;

… do stuff with m …

free(m);

Memory management

• Java: 

You barely need to think about this at all.
MyObject m = new MyObject(2,3); 

… do stuff with m …

• Same with LISP!
(cons 2 3)

Lisp memory model
Cons cell:
Atom:
(cons 'A (cons 'B (cons 'C nil)))

Address Decrement

Atom A

Atom B

Atom C

nil

Atom value

Sharing data

A B A B A B

(a) (b)

• Which is the result of evaluating  
 (cons (cons ‘A ‘B) (cons ‘A ‘B)) ?

Garbage collection

A

B

C

...

D

E

Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly integrated
into a programming language runtime.

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location “mark” bit 1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells 3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

Computability Computability

i.e., what can and cannot
be done with a computer

A function f is computable if there
is a program P that computes f.

In other words, for any (valid) input x, the
computation P(x) halts with output f(x).

example

P(x) is:
f(x) = x + 5

valid inputs are integers

computable?
yes.

Computability

example

P(x) is:
f(x) = 5/x

valid inputs are integers

computable?
yes, partially.

Computability

f: A→B is a subset f ⊆ A×B subject to

Total Function

1. for every a∈A, there is a b∈B with ⟨a,b⟩∈f totality

single valued2. if ⟨a,b⟩∈f and ⟨a,c⟩∈f then b=c

e.g,
f(x) = x + 5

0

2

1

3

4

5

7

6

8

9

f(x) = x + 5

Intuition: total function

For every element in x, there is a corresponding
element in y. x maps to at most one element in y.

x

y

f: A→B is a subset f ⊆ A×B subject to

Partial Function

1. for every a∈A, there is a b∈B with ⟨a,b⟩∈f totality

single valued2. if ⟨a,b⟩∈f and ⟨a,c⟩∈f then b=c

e.g,
f(x) = 5/x

0

2

1

3

4

5/2

5

5/3

5/4

f(x) = 5/x

Intuition: partial function

x still maps to at most one element in y,
however, there is not a y for every x.

x

y

undefined

The graph of a function

f(x) = x + 5

{<x, x+5> | x ∈ ℤ}

{<x, x+5> | x is an integer}

The graph is not a picture!

Recap & Next Class

Today:

Next class:

Higher order functions

More computability

Computability, part 1

