Topics

CSClI 334:

Principles of Programming Languages
Higher Order Functions

Lecture 11: Higher Order Functions Computability, part 1

Instructor: Dan Barowy
Williams

Your to-dos Three amazing concepts from LISP

* First-class functions

1. Reading response, due Wednesday 3/9. *Higher-order functions
2. Lab 5, due Sunday 3/13 (partner lab) -map

- |
(last one before midterm!) -fold

- Garbage collection

a function

“first class” function

3
[a>) @ o % -
N £/ . o .
vvs . Rule - Function definitions are values in a
:\ +1 (°° . .
5 functional programming language
73/ [0V
e o <>
v
4
a function
3
=% %
W A
QLK - Rule ~
:\ +1 (°° s © Y
2/ [0V 2/ [0V
= <> T =
v

map

Intuition: —

Like a for loop, but without mutable variables

(mapcar (lambda (x) (+ x 1) (1 2 3 4 5))

‘(1 2 34 5)

‘(2 3 45 6)

Activity

Write a function (using mapcar) that replaces the
number 3 in a list with the

number 6

(mapcar #’'my-replace (1 2 3 4 5 6))
(1 2 6 45 0)

Activity

Write a function (using mapcar) that replaces the
number 3 in a list with the

number 6

(defun my-replace (x)
(cond
((equal x 3) 6)
(t x)

)
(mapcar #’'my-replace (1 2 3 4 5 6))
(1 2 6 4 5 6)

fold

fold left

(reduce #'+ '"(1 2 3) :initial-value 0)

acc = 0, Y(1 2 3)
acc = 0+1, ‘(2 3)

Intuition: aoe = 142, N (3)
acc = 3+3, nil
returns acc = 6
fold right what does this print?
(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc = 0
‘(1 2), acc = 0+3
‘'(1), acc = 2+3

nil acc = 541

returns acc = 0

(reduce #'append ' ((2) (2))

tinitial-value '"(w 1 1 1 1 a m s))

how about?

(reduce #'append ' ((2) (2))
:initial-value '"(w 1 1 1 1 a m s)

:from—-end t)

fold

structural recursion — fold it!

(in a nutshell: any problem that recurses on a subset of input)

nifisteafife:

list length tree height

evaluation

Activity

list length using reduce

(length-1ist ‘(1 2 3 4 5 6))

» 6

Activity

list length using reduce

(defun mycount (acc

(defun length-1list

x) (+ acc 1))

(xs)

(reduce #'mycount xs
:initial-value 0)

That’s pretty much it!

e See “LISP Notes” for all the syntax you need to Automatic Memory Management
know on course webpage

Memory management Memory management

e C:

When you want to use a variable, you have to allocate

e Java:

o _ You barely need to think about this at all.
it first, then decallocate it when done.
MyObject m = new MyObject (2, 3);
MyObject *m = malloc(sizeof (MyObject))
. do stuff with m ..

+ Same with LISP!

(cons 2 3)

m->foo = 2;
m->bar = 3;
. do stuff with m ..

free(m) ;

Lisp memory model

Cons cell: |Address [Decrement |
Atom: | Atom |value |

(cons '"A (cons 'B (cons 'C nil)))

Sharing data
(a) (b)

L L

|
y T il
~ A B A |B A |B
Atom A / \
nil » Which is the result of evaluating
Atom B / (cons (cons ‘A ‘B) (cons ‘A ‘B)) ?
Atom C
_ Garbage collection
Garbage collection
e \ b
/ \ A garbage collection algorithm is an algorithm that
P 2 determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly integrated
// into a programming language runtime.
B \ E

a0

fO

“mark-sweep”
garbage collection

storage
location “mark” bit

|

< |\ 10
R
A 0 c
\\
P
N\

1. Mark reachable cells

a0

(oY

pd
/
A 0
N\
f0 \\

a0

f0

1. Mark reachable cells

o

1. Mark reachable cells

a0 — o

f0 A\

1. Mark reachable cells 1. Mark reachable cells

(oY

90 o \ 1 D 0 50 ~
A 1 c 1 A 1
AN AN
f0) N f0 N
AN S— N\
NN E 0 e []t

2. Free (“sweep”) unreachable cells 3. Clear tags
90 —_ | \ [50 ~ |z
A 1 c 1 A 0
\\ \\
0 0
BENENE e | o

Computability

Computability

I.e., what can and cannot
be done with a computer

A function fis computable if there
is a program P that computes f.

In other words, for any (valid) input x, the
computation P(x) halts with output f(x).

Computability

example
valid inputs are integers

P(x) is:
f(x) =x+5

computable?
yes.

Computability

example
valid inputs are integers

P(x) is:
f(x) = 5/x

computable?
yes, partially.

Total Function

f: A—B is a subset f ¢ AxB subject to

1. for every a€A, there is a beB with (a,b)ef totality

2. if (a,b)ef and <a,c)ef then b=c single valued

e.g,
f(x)=x+5

Intuition: total function

f(x) =x+5

For every element in x, there is a corresponding
element in y. x maps to at most one element iny.

Partial Function

f: A= B is a subset f ¢ AxB subject to

1. for ever - abe i -

2. if (a,byef and <(a,c)ef then b=c single valued

e.g,
f(x) = 5/x

Intuition: partial function

undefined

f(x) = 5/x

x still maps to at most one element in y,
however, there is not a y for every x.

The graph of a function

f(x)=x+5
{<X, x+5> 1 x € Z}

{<X, x+5> | x is an integer}

The graph is not a picture!

Recap & Next Class

Today:
Higher order functions
Computability, part 1

Next class:

More computability

