
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: LISP

Topics

No quiz today
LISP

Your to-dos

1. Lab 4, due Sunday 3/6 (partner lab)
2. Reading response, due Wednesday 3/9. 

Last one before midterm!

Announcements

•Midterm exam, in class, Thursday, March 17.
•Friday colloquium, Elena Glassman (Harvard), 
2:35pm in Wege Auditorium

“Human-AI (Mis)Communication: challenges
and tools for successfully communicating
what we want to computers”
Abstract
While we don’t always use words, communicating what we want to a computer, especially an artificially intelligent
one, is a conversation—with ourselves as well as with it, a recurring loop with optional steps depending on the
complexity of the situation and our request. I will present some key, perhaps previously under-appreciated steps
and describe conditions where it is critical to support them, illustrated with examples from recent publications
of (1) novel interfaces for interactive program synthesis and (2) interactive visualizations of large piles of complex
data. In the process, I will describe relevant theories from the learning sciences, i.e., Variation Theory and
Analogical Learning Theory, that have design implications for future interface and interactive system design—to
hopefully maximize the bidirectional speed and accuracy of human-AI communication.

LISP

John McCarthy

IBM 704 Lisp was invented for AI research

704 Assembly (circa 1954)
(From Coding the MIT-IBM 704 Computer)

FORTRAN (circa 1956)
(From NASA Technical Note D-1737)

LISP (circa 1958)

(defun fact (n)
 (cond ((eq n 0) 1)
 (t (* n (fact (- n 1))))))

LISP is a “functional” language

• programs are “mathematical”

• no statements, only expressions

• no mutable variables, only declarations

• therefore, the effect of running a program

(“evaluation”) is purely the effect of applying a

function to an input.

Statements vs. expressions
• A statement is an operation that changes the state of the

computer

Java: i++

value stored at location i incremented by one

• An expression is a combination of values and

operations that yields a new value

Lisp: (+ i 1)

evaluating + with i and 1 returns i plus one

• Lisp has only expressions.

LISP is a “functional” language

(defun add-one (n)(+ n 1))

3

4

+1

LISP is a “functional” language

(defun cleaning-robot (dirt) …)

dirty house

clean house

clean

Big functions are “composed”
of little functions

(defun cleaning-robot (dirt) …)

www

dirty house

clean house

Program correctness is easier to achieve

www

I.e., whole is correct if pieces are correct.
clean house

dirty house
LISP is deeply influenced
by the lambda calculus

• all code is either a value, a function definition, or a

function application

value: 1

application: (+ 1 1)

• syntax is (mind-numbingly) regular

functions: (function-name arguments …)

values: anything (except defun)

• evaluating an expression produces a new value: 
(+ 1 1)⇝2

REPL
(read-eval-print loop) Batch mode

Mutable variables

• If you can update a variable in a language, you

have mutable variables

Java: int i = 3;
 i = 4;

• Notice that both lines of code are statements

• Lisp does not have mutable variables

Immutable variables

• Variables cannot be updated in LISP

LISP: (defun my-func (i) …)
 (my-func 3)

or the shorter 
 ((lambda (i) …) 3)

• Notice that all of the above are expressions

• In fact, functions are the only way to bind values

to names in (pure) LISP

Lisp syntax: atoms

• An atom is the most basic unit of data in Lisp
4

112.75

“hello”

‘foo

t

nil

Number

Number

String

Quoted symbol

Boolean

Empty list

LISP control flow

• Conditionals are stated using cond

• It’s a generalization of if/else

• Think of it as switch on steroids

• Syntax: 
(cond (p1 e1) ... (pn en))

• Where pi is a predicate and  

ei is an expression to run when pi is T.

cond: fibonacci

LISP control flow

• LISP has no loops

• All repetition is done recursively, or…

• by using higher-order functions (next class!)

Lisp syntax: data structure

• Historically, Lisp has exactly one data structure:

the cons cell.

• The “cons cell” allows “composing” values
(cons “hello” 4)

“hello” 4

• E.g., lists in Lisp are just made out of cons cells
(cons 1 (cons 2 (cons 3 nil)))

• Lisp has a shorthand for this:
 ‘(1 2 3)

Lisp syntax: lists

1 2 3

∅

“Recursive Functions […]” (McCarthy)

car

Lisp C
head

cdr tail

cons prepend

Note: head and tail have a different
meaning than the ones you learned in CS136.

Lisp syntax: car and cdr
• Access the first element of a cons cell with car

(car (cons 1 2)) ⇝ 1

• Access the second element with cdr

 (cdr (cons 1 2)) ⇝ 2

• What’s the value of the following expression?  
(car ‘(1 2 3))

• What about this?  
(cdr ‘(1 2 3))

Historical note: car and cdr
• car stands for “Contents of the Address Register”

• cdr stands for “Contents of the Decrement Register”

These were instructions on the IBM 704.

Activity: fizzbuzz

Write a program that prints the numbers
from 1 to 100. But for multiples of three
print fizz instead of the number and for
the multiples of five print buzz.

Helpful bits:
 (and p1 … pn)
 T and nil
 (eq p1 p2)
 (mod n1 n2)
 sequence

Recap & Next Class

Today:

Next class:

LISP

Higher-order functions

