CSCI 334:
Principles of Programming Languages

Lecture 7: Evaluation by Rewriting

Instructor: Dan Barowy
Williams

Topics

Lambda calculus—how to evaluate it

Your to-dos

1. Lab 3, due Sunday 2/27 (individual lab)
2. Reading response, due Wednesday 3/2.

Lambda calculus: relevance

Fundamental technique for building programming
languages that work correctly (and intuitively!).

But it can also be leveraged to do some seemingly
magical things, like type inference:

Vector<Association<String, FrequencyList>> table =
new Vector<Association<String, FrequencyList>>();

Vector<Association<String, FrequencyList>> table = new Vector<>();

let table = new Vector<>();




Class Lambda Grammar

Evaluation: You know how C does it

<expr> 1= <value>
| <abs>
< >
| app #include <stdio.h>
| <parens>
void hello () {
<var> = o € {a ... z} hello —p printf (“Hello world!\n”);
}
<abs> 1= A<var>.<expr>
I int main() {
<app> 1 1= <expr><expr> ain hello () ;
<parens> ::= (<expr>) }retumqo;
<value> ::= v €N Call stack
| <var>
Evaluation: Lambda calculus is like algebra a-Reduction
(AX.X) X (AxX.X) X

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

a-reduction

B-reduction

This expression has two different x variables

Which should we rename?
Rule:

AX.<expr> =4 Ay.[y/x]<expr>

[v/x]<expr> means “substitute y for x in <expr>"




a-Reduction

(Ax.x) x given
(Ay. [y/x]x)x a-reduce x with y (binding)
(Ay.y) x a-reduce x with y (expr)

B-Reduction

(AX.X) Y

How we “call” or apply a function to an
argument

Rule:

(Ax.<expr>)y =g [y/x]<expr>

Let’s reduce this

(AX.xX)X

How far do we go?

We keep going until there is nothing left to simplify.

X 4— done
XX 44— done
AX.Y 4— done

(AX.xy)z <4— notdone
That “most simplified” expression is called a
normal form.

An expression that can be simplified is
a called a redex.




Try this one with a partner

(AX.AY.yX) XY

Sometimes multiple simplifications

Order (mostly) does not matter

then My »* Nand M, =* N

M
/ \ IfM — M, and M = M,
M, M,

for some N
AN’. 11 fI ”
(don’t forget precedence/associativity rules) contiuence
Activity Activity

Leftmost reduction:

(AMf.AX.E(f x)) (Az. (+ x 2))2

Rightmost reduction:

(Af.AX.E(f X)) (Az. (+ x 2))2




Recap & Next Class

Today:

Lambda calculus: how to evaluate

Next class:
LISP




