
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: Evaluation by Rewriting

Topics

Lambda calculus—how to evaluate it

Your to-dos

1. Lab 3, due Sunday 2/27 (individual lab)
2. Reading response, due Wednesday 3/2.

Lambda calculus: relevance

Vector<Association<String,FrequencyList>> table =
new Vector<Association<String,FrequencyList>>();

let table = new Vector<>();

…

Fundamental technique for building programming
languages that work correctly (and intuitively!).

But it can also be leveraged to do some seemingly
magical things, like type inference:

Vector<Association<String,FrequencyList>> table = new Vector<>();

Class Lambda Grammar

<expr> ::= <value>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ
 | <var>

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

hello

Evaluation: You know how C does it

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

λx.<expr> =α λy.[y/x]<expr>

[y/x]<expr> means “substitute y for x in <expr>”

α-Reduction

(λx.x)x given
(λy.[y/x]x)x α-reduce x with y (binding)
(λy.y)x α-reduce x with y (expr)

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

Rule:

(λx.<expr>)y =β [y/x]<expr>

Let’s reduce this

(λx.x)x

How far do we go?

x

We keep going until there is nothing left to simplify.

(λx.xy)z

xx

λx.y

That “most simplified” expression is called a
normal form.

done
done
done
not done

An expression that can be simplified is
a called a redex.

Try this one with a partner

(λx.λy.yx)xy

(don’t forget precedence/associativity rules)

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

Sometimes multiple simplifications

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Leftmost reduction:

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Rightmost reduction:

Recap & Next Class

Today:

Next class:

Lambda calculus: how to evaluate

LISP

