
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 2: Language Models

Topics

Language models / implementation

Pointer model / Breph

Pointers + stack machine model / C

Your to-dos

1. Reading response, due Wednesday 2/9.
2. Lab 1, due Sunday 2/13 (partner lab)

Announcements

•Field trip to WCMA on Thursday (next class)
•Thesis Proposal Colloquium this Friday, Feb 11

Toyota Production System

Any worker can stop the line!

Toyota Production System

Stop me if you feel like something is missing!

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

Why is computer science called
“computer science”?

Why is computer science called
“computer science”?

Let’s start with the “computer” part.

Why is computer science called
“computer science”?

How about the “science” part?

Science

Science, from the Latin scientia (‘knowledge’), is
a systematic enterprise that builds and organizes
knowledge in the form of testable explanations
and predictions about the universe.

(source: Wikipedia)

Science

experiment
Broadly, the goal is to find a simple explanation
that accurately predicts the behavior of a given
phenomenon.

theory

Models

Simple explanations are often, but not always,
mathematical.

quantum mechanics

carbon cycle
theory of mind

ideal gas law

natural selection

small world hypothesis
fermat’s last theorem

zone of proximal
development

Computer Science

theory experiment
What are we trying to explain in this discipline?

Broadly: how mechanical computation
can be used effectively.

What models do we have in CS?

calculus of
constructions

Von Neumann
machine object orientation

Lambda calculus

nominal types

distributed system
n-player game

Turing machine

Programming languages are built on models.

Programming language models

A programming language model
says what a program should do.

Pointer model

“The way C handles pointers […] was a brilliant
innovation; it solved a lot of problems that we had
before in data structuring and made the programs
look good afterwards.” — Donald Knuth

Why do we need pointers?

1. “Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

2. They are necessary for building “persistent” data structures.

Breph machine

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

0

scratch cell

0

A simple Turing equivalent language with pointers.

Breph machine
A Breph program changes the state of a Breph machine

*+++++++.
j
 &+!
 *+++++.
 &-!
 *-.
u

Breph machine: dereference

current cell

3 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

0

scratch cell

0

*

Copies current cell to expression cell.

Breph machine: dereference

current cell

3 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

3

scratch cell

0

*

Copies current cell to expression cell.

Breph machine: store

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

3

scratch cell

0

.

Copies expression cell to current cell.

Breph machine: store

current cell

3 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

3

scratch cell

0

.

Copies expression cell to current cell.

Breph machine: address of

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

0

scratch cell

0

&

Copies current location to expression cell.

Breph machine: address of

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

2

scratch cell

0

&

Copies current location to expression cell.

Breph machine: change location

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

2

scratch cell

0

!

Updates current cell location with value in expression cell.

Breph machine: change location

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

2

scratch cell

0

!

Updates current cell location with value in expression cell.

Breph machine: increment

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

2

scratch cell

0

+

Increments the value in the expression cell.

Breph machine: increment

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

3

scratch cell

0

+

Increments the value in the expression cell.

Breph machine: decrement

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

3

scratch cell

0

-

Decrements the value in the expression cell.

Breph machine: jump

current cell

0 0 0 0 0 0 0…

0 1 2 3 4 29998 29999

tape

expression cell

2

scratch cell

0

j

Jumps ahead to the matching u if current cell is 0.

Breph machine: jump
j

current cell

4

tape

0

*+++++++.
j
 &+!
 *+++++.
 &-!
 *-.
u

program

Jumps after the matching u if current cell is 0.

Breph machine: jump
j

Jumps after the matching u if current cell is 0.

current cell

4

tape

0

*+++++++.
j
 &+!
 *+++++.
 &-!
 *-.
u

program

Breph machine: unjump
u

Jumps to the previous matching j if current cell is not 0.

current cell

4

tape

3

*+++++++.
j
 &+!
 *+++++.
 &-!
 *-.
u

program

Breph machine: unjump
u

Jumps to the previous matching j if current cell is not 0.

current cell

4

tape

3

*+++++++.
j
 &+!
 *+++++.
 &-!
 *-.
u

program

Breph machine: unjump
u

Jumps to the previous matching j if current cell is not 0.

current cell

4

tape

3

*+++++++.
j
 &+!
 *+++++.
 &-!
 *-.
u

program

Breph machine

Breph instruction syntax and its semantics.

C C

Start reading “A Brief Overview of C.”

Some useful “functions” for Lab 2

See the “man” pages

malloc
free

sizeof

atoi
printf

rand
srand

memset
strncpy
fscanf
fopen
fclose
rewind

Not a function;
no man page

“man” pages

sizeof operator

sizeof is a compile-time unary operator which
computes the size of its operand in bytes. The result of
sizeof is of unsigned integral type (size_t).

sizeof can take two kinds of operands:
1. a data type (e.g., int, float, etc.), or
2. an expression (e.g., 2 + 1.07).

Manual memory management
• C was invented in 1972.
• It features manual

memory management.
• Automatic memory

management was
invented in 1959!

• So… why have manual
management?

• In C, manual memory
management is a
feature, and it’s the
reason why it might be
your language of choice.

• OS, high-performance
code, etc.

Ken Thompson (inventor of C, sitting) and
Dennis Ritchie (inventor of UNIX, standing).

C is about memory

It uses a model of a computer that I call the
“boxes and arrows model.”

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

hello

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

hello

printf

printf

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

hello

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

program is done

Storage Duration

We will focus on two: automatic and allocated

You (the programmer) choose which one you want.

Rule:
Always choose automatic duration unless the lifetime
of your data outlives its allocation site, in which case,
you should choose allocated duration.

i has automatic duration, because you didn’t specify anything.

int i = 3;

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store i on the call stack.

Storage Duration: Automatic

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main
i

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main
i ← 3

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

Where does i get returned? How?

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main’s stack frame and all variables in it (i.e., i) are
automatically deallocated when main goes out of scope.

Storage Duration: Allocated

the memory i points to has allocated duration, because you used malloc.

int *i = malloc(sizeof(int));

C will manually allocate on request
and deallocate memory on request.

In reality, nearly every C implementation will store i on the heap.

Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof(int));
free(i);

You have to do this even if i goes out of scope!

Failing to free when you are done is a bug called a memory leak.

Recap & Next Class

Today we covered:

Next class:
WCMA!

Language models

