Homework 7 Handout 17
Due Sunday, April 17 by 10:00pm CSCI 334: Spring 2022

Turn-In Instructions

Turn in your work using the Github repository assigned to you. The name of the Github repository will
have the form cs3341ab7_<your user name>. For example, my repository would be cs3341lab7_dbarowy.
You should have received an invite to commit in the repository in your email. If you did not receive this
email, please contact me right away!

For this assignment, your completed submission should consist of two parts.

1. A IXTEX source file called 1ab7.tex and pre-built PDF called 1ab7.pdf in a folder called pset that
contains solutions to any written questions. A IATEX template is provided to help you get started. Be
sure to git add all necessary files (e.g., images) if your IXTEX depends on it. For full credit, please
ensure that your IATEX file builds without error.

2. For each coding question in this assignment, create a project directory. For example, the source
directory for question 1 should be in a folder called “q2”. You should be able to cd into this directory
and then run the program by typing the command “dotnet run”. Each program should be split into
two pieces: a “Program.fs” file that contains the main method and associated program-startup routines
(like argument parsers), and another “Library.fs” file that contains the function(s) of interest in the
question. All library code should be in a module named “CS334”. Be sure to provide usage output
(defined in main) for all programs that require arguments. For full credit, your program should both
build and run correctly.

Honor Code

This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit
your solution. No code copying is allowed. Be sure to tell me who your partner is by committing a
collaborators.txt file to your repository (2 points).

This assignment is due on Sunday, April 17 by 10:00pm.

Sanity Check: Students sometimes submit incomplete assignments, accidentally forgetting to run git add
for all of their files. Fortunately, there is an easy way to make sure that this does not happen to you. Before
you are done, git clone your repository to a new folder and then try building/running everything. It only
takes a couple minutes and can spare you from headaches later on.

Reading

1. (Required) “A Brief Introduction to F#”
2. (Required) “A Slightly Longer Introduction to F#”

Q1.

Problems

(B0 POINES) . -\ttt et et Zipping and Unzipping

(@)

Write a function zip(xs: 'a list)(ys: 'b list) : ('a * 'b) list that computes the prod-
uct of two lists of arbitrary length. You should use pattern matching to define this function:

> 21p [1,3;5’7] ["a";"b";"c";"d"];;
val it : (int * string) list = [(1, "a"); (3, "b"); (5, "c"); (7, "d")]

When one list is longer than the other, repeatedly pair elements from the longer list with the last
element of the shorter list.

> le [1,3] ["a";"b";"c";"d"];;
val it : (int * string) list = [(1, "a"); (3, "b"); (3, "c"); (3, "d")]

In the event that one or both lists are completely empty, return the empty list. Note that in
fsharpi, calling the function as below will produce an error because F# cannot determine the
type of the element of an empty list.

> zip [1;3;5;7] [1;;

zip [1;3;5;7]1 [I;;

code/stdin(14,1): error FS0030: Value restriction. The value 'it'
has been inferred to have generic type

val it : ((int * int * int * int) * '_a) list
Either define 'it' as a simple data term, make it a function with
explicit arguments or, if you do not intend for it to be genmeric,
add a type annotation.

To make empty lists work, explicitly provide a type for the return value.

> let xs : (int * int) list

= zip [1;3;5;7] [1;;
val xs : (int * int) 1list = []

Write the inverse function, unzip(xs: ('a * 'b) list) : 'a list * 'b list, which behaves
as follows:

> unzip [(1,"3")§ (3,"b") ;(5;"0"); (7,"de")]§;
val it : int list * string list = ([1; 3; 5; 7], ["a"; "b"; "c"; "de"])

Write zip3(xs: 'a list)(ys: 'b list)(zs: 'c list) : ('a * 'b * 'c) list, that zips
three lists.

> zip3 [1;3;5;7] ["a";"b";"c";"de"] [1;2;3;4];;
val it : (int * string * int) list =
[, "a", 1); (3, "b", 2); (5, "c", 3); (7, "de", 4)]

You must use zip in your definition of zip3.

Provide a main function that exercises all of the above cases, plus a few more that you think of
yourself.

Why can’t you write a function zip_any that takes a list of any number of lists and zips them into
tuples? From the first part of this question it should be clear that for any fixed n, one can write
a function zipn. The difficulty here is to write a single function that works for all n. In other
words, can we write a single function zip_any such that zip_any [listl;list2;...;listk]
returns a list of k-tuples no matter what k is? Provide an answer in your 1ab7.tex KTEX file.

The project directory for this question should be called “q1”. You should be able to run this program
using “dotnet run” without any additional arguments.

Q2. (20 POINES) ..o F# Map for Trees

(a)

(c)

The binary tree datatype

type Tree<'a> =
| Leaf of 'a
| Node of Tree<'a> * Tree<'a>

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this
type must have at least a root node).

Write the function
let maptree f t = 777

where f is a function and t is a tree. maptree should return a new tree that has the same structure
as t but where the values stored in t have the function £ applied to them.

Graphically, if £ is a function that can be applied to values stored in the leaves of tree t, and t
is the tree on the left, then maptree f t should produce the tree on the right.

./.\.
NN S
NIV O

For example, if f is the function let f x = x + 1 then
maptree f (Node(Node(Leaf 2, Leaf 3), Leaf 4));;
should evaluate to Node (Node (Leaf 3,Leaf 4),Leaf 5).

In a comment block above your maptree definition, explain your definition in one or two sentences.
Comment blocks in ML look like the following.

(*

* Says hello to the given name.

* @param name The name.
* Qreturn Nothing.
*)
let sayHello name =
printfn "Hello %s!" name

Be sure to provide @param and @return tags.

What type does F# give to your function? Why isn’t it the type ('a — 'a) — Tree<'a> —
Tree<'a>? Provide an answer in your lab7.tex IKTEX file.

The project directory for this question should be called “q2”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and output like the kind shown above
should be printed to the screen. Be sure to provide several examples that demonstrate that your
function works correctly.

Q3.

Q4.

(20 POINES) - .o v oo e e e e e F# Reduce for Trees
The binary tree datatype

type Tree<'a> =
| Leaf of 'a
| Node of Tree<'a> * Tree<'a>

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this type
must have at least a root node).

(a) Write a function
treduce : ('a — 'a— 'a) — Tree<'a>— 'a

that combines all the values of the leaves using the binary operation passed as the first parameter.

In more detail, if oper : 'a — 'a— 'aand t is the nonempty tree on the left in this picture,
° oper
° . oper oper
. . . . oper oper oper oper

/\ l/\l AN ANERVAN 1/\1 VANVAN

S

then treduce oper t should be the result obtained by evaluating the tree on the right. For
example, if £ is the function
let fxy=x+y

then treduce f (Node(Node(Leaf 1, Leaf 2), Leaf 3)) = (14 2)+ 3 and the output is 6.

(b) In a comment block above your maptree definition, explain your definition of treduce in one or
two sentences. Be sure to provide @param and @return tags.

The project directory for this question should be called “q3”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and output like the kind shown above
should be printed to the screen. Be sure to provide several examples that demonstrate that your
function works correctly.

(L0 POINES) oottt ettt et et e e Five 5's

Consider the well-formed arithmetic expressions using the numeral 5. These are expressions formed by
taking the integer literal 5, and the four binary arithmetic operators +, -, *, and /. Examples are 5,
(6 + 5),and ((6 + 5) * (56 - (5 / 5))). Such expressions correspond to binary trees where the
internal nodes are operators and every leaf is a 5. You may recall that trees of this form are abstract

syntax trees.

Note that in the examples above, we always surround subexpressions that use an arithmetic operator
with parens to avoid ambiguous expressions.

Write an F# program that answers each of the following questions:

(a) What is the smallest positive integer that cannot be computed by an expression involving exactly
five 5’s7

(b) What is the largest prime number that can computed by an expression involving exactly five 5’s?

(c) Generate a human-readable expression (e.g., ((6 + 5) * (5 - (5 / 5)))) that evaluates to that
prime number.

You should start by defining an algebraic data type (i.e., a type) to represent arithmetic expressions
involving the number 5 and the arithmetic operations. This question involves only integer arithmetic,
so be sure to use int data.

Next, implement an eval function that takes an expression and computes the result. This evaluation
function should call itself recursively until it hits a base case whose result is obvious. Think for a
minute about what that base case might be.

You should then write a function that generates all possible expressions that contain a given number
of 5’s.

Answering the questions will involve an exhaustive search for all numbers that can be computed with
a fixed number of 5’s, so good programming techniques are important. Avoid unnecessary operations.
You will also have to address the possibility of division by zero inside eval. There are a couple ways
to do it— you could use an exception handler, or you could modify your eval function to work with an
option type.

Be sure to document your code using (* F# comment blocks *).

The project directory for this question should be called “q4”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and the program’s output should clearly
indicate the answers to the questions above.

