Homework 10
Due Sunday, May 15 by 10pm

Turn-In Instructions
Since you will be committing your work to an existing repository, please commit your work to a new branch
called mostly-working.

This assignment is due on Sunday, May 15 by 10pm.

Sanity Check: Students sometimes submit incomplete assignments, accidentally forgetting to run git add
for all of their files. Fortunately, there is an easy way to make sure that this does not happen to you. Before
you are done, git clone your repository to a new folder and then try building/running everything. It only
takes a couple minutes and can spare you from headaches later on.

Honor Code

This is a partner project lab. You may work with another classmate if you wish, and you may co-develop
solutions. Unlike with previous partner labs, you may share source code, and you only need to submit it
once. In other words, there is no need to type up and submit your solution twice. As I already know who
your partner is, you do not need to submit a collaborators.txt file to your repository. However, if your
partner arrangement changes, please let me know.

Problems

QL. (10 POINES) + vt vene et et ettt Language Name

If your language does not have a name, now is the time to give it one. Silly, nerdy, and/or humorous
names are especially appreciated.

Q2. (10 POINES) vt e Git Branch

Please commit your work to a new branch called mostly-working in your existing project repository.

Q3. (10 POINES) -ttt ettt Organization
Be sure to organize your implementation across at least three files, as in the previous assignment:
¢ Your parser should reside in a file called ProjectParser.fs.
e Your interpreter / evaluator should reside in a file called ProjectInterpreter.fs.
¢ Your main function, as well as any necessary driver code, should reside in a file called Program.fs.
e You may create additional library files as necessary.
All of these files should be stored somewhere in a directory called lang. To incorporate tests, you will

need to reorganize your code as a .NET solution instead of a simple .NET console project. However,
the precise arrangement of files inside the lang folder does not matter to me, and is totally up to you.

Your project implementation should adhere to the following running convention. You should be able
to cd into the lang directory and then run your language implementation by typing the command
“dotnet run <args>”. Depending on the design of your implementation, <args> should either be
a string representing a program or a path to a file containing a program. Running “dotnet run”
command without arguments should make it clear how to call your program with arguments.

Q4. (80 POINS) ...\ o ettt Complete project specification

Your updated project specification as a IATEX source file and pre-built PDF. Please call the IWTEX file
lang-spec.tex and call the PDF lang-spec.pdf.

If you have not done so already, please merge your project proposal with your project specification
document from Lab 9. The project specification should be a complete document that explains the
purpose, motivation, and technical implementation details of your language. A sufficiently-motivated
user should have all the information they need in order to write programs in your language using your
documentation.

Most of the sections are the same as before; sections that require new text are marked with a bold
NEW. Please be sure to have the following sections:

(a) Introduction
What problem does your language solve? Why does this problem need its own programming
language?

(b) Design Principles

Languages can solve problems in many ways. What are the guiding aesthetic or technical principles
that underpin its design?

(c) Examples
NEW. Provide three working example programs in your language. If any of the examples from
your proposal do not yet work, please either extend the language to support them or replace

them with working examples. Explain exactly how to run each example (e.g., dotnet run
"example-1.lang") and what the expected output should be (e.g., 2).

(d) Language Concepts

What are the core concepts a user needs to understand in order to write programs? Think in
terms of both “primitives” and “combining forms.” What are the key ideas and how are they
combined?

(e) Formal Syntax

NEW. Provide a formal syntax for all supported operations, written in Backus-Naur form. This
documentation should provide all of the rules necessary for a user to generate a valid program.
You may omit whitespace from your BNF specification if you find it cumbersome to write about.

(f) Semantics

NEW. Update the semantics section from Lab 9 to explain all of your currently-supported data
types and operations. This section should explain how a user understands the effect of a syntactic
construct given in the formal syntax section. This need not be so detailed that it explains what
the code does; instead it should explain what the syntax means. In other words, focus on what
each language element achieves instead of explaining how it does it. Please refer to the example
shown in Lab 9 for guidance. Your semantics section need not be in the tabular form shown if a
table is inconvenient.

(g) Remaining Work

NEW. Add a section at the end of your specification that explains which features are not yet
implemented but which you plan to implement by the final project deadline. This should include
any essential remaining data types and operations described in your proposal that you have not
yet implemented.

If you are already nearly done, this would be a good place to describe an optional “stretch goal.”
For example, if you plan to build a graphical user interface for your language—which is most
definitely optional—describe that interface here. Another possibility is a program correctness
checker. For example, your syntax may generously admit programs that make little sense syntac-
tically; adding a program checking phase before evaluation is another good “stretch goal.” A third
possibility may be to describe a plan to enhance the readability of your language specification.

Q5. (10 POINLS) - eee ettt ettt Example programs

Provide the example programs discussed in your proposal as separate files so that it is easy
to find and use them. Please call them example-1.<whatever>, example-2.<whatever>, and

Q6.

Q7.

example-2.<whatever>. For example, I might call my example programs example-1.lang,
example-2.lang, and example-3.lang.

(10 POINES) - - v e e e e e e e Execution

Each of your examples should run and produce the outputs described in your project proposal. In
addition, if a user makes reasonable attempts to use your language by referring to the language docu-
mentation, those examples should work or mostly work.

(10 POINES) - .ttt e e e e Tests

This submission is required to have at least one test. The required test should be an “end-to-end”
test that ensures that for a given program in your language (and user-provided input, if your language
needs them) you get a given output. The precise content of these tests is up to you, because it’s your
language, but you must have one. To be clear, the test should check that a parsed and evaluated input
produces an expected output.

Your final project will require more tests, at least one for each evaluation rule in your eval function. If
you want to get a head start, work on those tests now. From personal experience developing languages,
I view tests as a time-saver and not a time-waster. It is always frustrating to discover that a newly-
added feature breaks previous functionality. But making that discovery well after you've added the
feature—that’s even worse. Having a good test suite will help you find problems early, and it will save
you a lot of sweat and tears.

You might also consider testing your parsers, which are pure functions in your language implementation,
and therefore “easy” to test. For example, each subcomponent of a parser is itself a parser, and since
parser combinators are pure functions, they can be called independently of each other. To test parsers,
you will first need to prepare your input string, then pass it to one of your parser functions, then
check for Success or Failure.

I should be able to run your one test by running $ dotnet test. Once you have additional tests, I
should be able to run those the same way.

