
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 19-1: OOP III

Topics

Virtual dispatch

Dynamic Dispatch Refresher

C++: Only Pay for What You Use

Dynamic Dispatch

How OO polymorphism works

Ingalls Test for Extensibility

• The test is about the ability to extend software after it has

already been designed and written.

• E.g., suppose you have a class for a ColoredRectangle.

• Can you define a new kind of number (e.g., fractions), use

your new numbers to redefine (subtype) rectangle, and

then ask the system to color the rectangle?

• If so, you have an OO system.

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

Ingalls Test for Extensibility

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

0

yes, it’s object-oriented!

Ruby, Java, etc. pass the rectangle test

Dynamic Dispatch

x.value

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object selector

message{

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

@value

…

Number object Number class Template

@value

…

Method dictionary
value

squee

code

code

value

squee code

@value

…

Method dictionary

1 Call x.value

2

2 value message dispatched to x

3 value message forwarded to Number

4 value message lookup in method dictionary

3

5 value executed.

Number object Number class Template

@value

…

code
4 5

Inheritance

• One small change enables inheritance.

@value

…

RationalNumber object RationalNumber class Template

@value

…

Method dictionary
code

Superclass

value

squee code

Method dictionary

1 Call x.squee

2 squee message dispatched to x

3 squee message forwarded to RationalNumber

4 squee message lookup in method dictionary

5 algorithm recurses on superclass

5
Superclass

value code
4

no squee method

@value

…

Template

@value

…

2
3

RationalNumber object RationalNumber class

C++
Efficient object oriented programming.

“Only pay for what you use”

Consider the following Java program.

class Math {
public static double mean(int[] nums, int len){
 int sum = 0;
 for (int i = 0; i < len; i++) {
 sum += nums[i];
 }
 return (double) sum / len;
}
}

It uses no dynamic dispatch.

In fact, it barely uses any objects at all.

But Java still does a lot of work anyway…

1. boot up the Java Virtual Machine (JVM)
a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time performance monitor & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables
5. initialize static variables
6. execute main

a. repeat loading, linking, verifying, allocation, and initialization steps as
needed.

b. periodically run the garbage collector
c. run the JIT constantly, in a separate thread

x86

perfeval

JIT-Compilation

input

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

AST

output

comp

perf

comp

eval

x86

JIT-Compilation

input

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

AST

output

comp

perf
eval

x86

JIT-Compilation

input

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

AST

output

comp

perf
eval

x86

JIT-Compilation

input

AST

output

movf 0x1233, fp2
mulf #60.0, fp2
movf fp1, $12(sp)

new program

C++: “Only pay for what you use”

What does this mean?

class Math {
public static double mean(int[] nums, int len){
 int sum = 0;
 for (int i = 0; i < len; i++) {
 sum += nums[i];
 }
 return (double) sum / len;
}
}

C++: “Only pay for what you use”

What does this mean?

In C++, the “no class” program is as fast as C

Without classes, C++ is essentially C

double mean(int nums[], int len) {
 int sum = 0;
 for (int i = 0; i < len; i++) {
 sum += nums[i];
 }
 return (double) sum / len;
}

(demo OOP version)

C++: Only Pay for What You Use

(demo OOP version)

C++: Only Pay for What You Use

The version we came up with still doesn’t pay
for OO because it wasn’t polymorphic!

C++ does OO efficiently

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

code
Method dictionary

honk

…

Superclass

C++ eliminates lookups by computing locations at compile-time.

C++ also copies any needed superclass method pointers into class

C++ static methods are just C procedures. No classes needed.

(demo polymorphic C++)

C++: Only Pay for What You Use

Virtual Dispatch
Honkable object

vptr

Honkable vtable

honk

• Functions without the virtual keyword are just regular C
functions (that also have access to class instance data).

• C++ virtual dispatch does never searches as in SmallTalk;
vtable/instance variable offsets known at compile-time.

Honkable code

Virtual Dispatch (if I don’t override honk)
Honkable object

vptr

Honkable vtable

honk

Honkable code

Car object

vptr

color

cost

topSpeed

rust

Car code

honk

brake

Car vtable

Virtual Dispatch (if I do override honk)
Honkable object

vptr

Honkable vtable

honk

Honkable code

Car object

vptr

color

cost

topSpeed

rust

Car code

honk

brake

Car vtable

Cost

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

O(1) method lookup

} for each class
or superclass

O(n) method lookup, where n is the number of
superclasses.

Recap & Next Class

This lecture:

Next lecture:

How to give a good talk

C++: Only Pay for What You Use

Virtual Dispatch

