
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: Object Oriented Programming

Topics

Dan Ingalls talk

Programming in the large

“Do it the hard way.”

Dan Ingalls on Smalltalk Topics

Dan Ingalls talk

Programming in the large

“Do it the hard way.”

Thursday: more OOP & F# unit testing

Project Timeline

Project checkin: minimally working by May 10

Project done: complete by May 25

Project “presentation”: May 25
• 5-10 minute presentation/screen recording
• or a ≥ 1000 word written tutorial

(e.g., https://docs.python.org/3/tutorial/introduction.html)

Project checkin: mostly working by May 18 Student question:

“How do I build gumption?”

“[T]here’s a school of mechanical thought which says I shouldn’t be
getting into a complex assembly I don’t know anything about. I
should have training or leave the job to a specialist. That’s a self-
serving school of mechanical eliteness I’d like to see wiped out.
That was a “specialist” who broke […] this machine. I’ve edited
manuals written to train specialists for IBM, and what they know
when they’re done isn’t that great. You’re at a disadvantage the first
time around and it may cost you a little more because of parts you
accidentally damage, and it will almost undoubtedly take a lot
more time, but the next time around you’re way ahead of the
specialist. You, with gumption, have learned the assembly the hard
way and you’ve a whole set of good feelings about it that he’s
unlikely to have.”

—Robert Pirsig, Zen and the Art of Motorcycle Maintenance

Jerry: In the old days (before television), being able to add up a long column of numbers without making any mistakes was a valuable
skill. People would pay you a living wage to do nothing but add numbers well. Not today.

Theo: Today, it's nice to be able to add small numbers, and larger numbers in a pinch, but the specific mental tricks and habits needed to get
the right answer consistently when adding lots of numbers are just not helpful. Not being able to do this does not represent a failure of the
intellect, any more than not knowing which fields in your neighborhood have the best rabbit hunting: both were, at one time, failings that
would get you laughed at.

Jerry: But, you'd agree that being able to estimate the sum of a column of numbers is valuable. I would spend more time learning to do that
well than working to reduce my error rate in doing exact sums.

Theo: And yet, in schools you find worksheets with 100 addition problems that are supposed to be done correctly, with points taken off for
errors. What a waste of time.

Irate bystander: Oh, now I get it. You're one of those romantic educational know-nothings who think it's not necessary to learn anything in
particular, as long as you learn "critical thinking skills" and have good self esteem. Yuck.

Theo: No, and let me make this very clear. No one can learn to think without having something to think about. If you try to teach someone
how to think in the abstract, you are not going to get anywhere. If you try to make education "easy", by removing the content, you are
cheating your students out of the most important thing you have to offer: the chance to do something hard. Only by mastering a difficult
body of knowledge can a [student] develop into a confident, thinking adult. The point is, it doesn't necessarily have to be the same difficult
body of knowledge that the [their] parents learned.

And while we're on the topic of romantic educational know-nothings, let me just say that if you think you can improve your students' self
esteem by letting them "succeed" at various insipid educational games, you are kidding yourself. [Students] are much smarter than
that. There is nothing more demoralizing to most children than being put through an educational program they know they can't fail
at. Instead of teaching them self esteem, it teaches them that you expect so little of them that you have contrived special extra-stupid lessons
for their benefit. Don't think for a minute they don't know what's going on.

If you start a lesson off by telling the students "This is going to be easy", you are simultaneously telling them "We had to make this easy
because we don't think you're capable of doing anything hard". And when the lesson is over, the only sense of accomplishment they can feel
is that they did something easy. So what?

Learning is hard work. If you are not working hard, you are not learning. Period. [Students] love hard work, as long as they see where it's
going and why. Instead of killing that energy by giving them something easy, we should foster it by giving them something really hard. We
should tell them it's hard. We should give them the chance to do something meaningful.

—Theodore Gray, The Beginner’s Guide to Mathematica, V4

My advice:

Do things the hard way!
Object-Oriented Programming

Programming in the small

Programming in the large

What languages?

Java C++

Ruby C++, Python

Java

Object-Oriented Programming

• OOP is both a language design philosophy and a way

of working (OO design).

• OOP is possibly the most impactful development in

the history of programming languages.

What OOP is Not

• Many, many instructors introduce OOP as a way of

naturally simulating the world.

• This misses the point of OOP entirely!

What OOP is
• Object-oriented programming is actually about scalability.

• Scalability in codebase size was the original motivation.

• But OO philosophy also has had a big effect on the

scalability of programming teams.

small programs big programs

small teams

big teams

class projects
personal project

Google

Fortnite

Ruby on Rails

ML apps

Minecraft

History

• First language recognizable as OO:

Simula-67.

• Developed by Kristen Nygaard and others

at the Norwegian Computing Center.

• Grew out of frustrations using ALGOL.

• Original plan was to add an “object” library,

inspired by C.A.R. Hoare’s “record classes”.

• It was eventually realized that objects were

a fundamentally different way of

structuring a program; Simula became its

own language.

History

• But Simula-67 was not the most influential

OO language.

• That language was…

Smalltalk

Alan Kay
Essentially invented
the laptop/tablet
(“Dynabook”)

Turing Award

Dan Ingalls
Essentially invented
object oriented
programming

Grace Murray
Hopper Award

Adele Goldberg
Essentially invented
graphical user
interfaces

ACM Software
Systems Award

• First mainstream OO success: Smalltalk

• Developed by Alan Kay, Dan Ingalls, and Adele Goldberg at

Xerox PARC and later Apple Computer.

• Used to implement major components of the groundbreaking

Xerox Alto computer: OS, compiler, GUI, applications.

• Highly influential. E.g., C++, Java, Ruby, etc.

Smalltalk

And they showed me really three things. But I was so

blinded by the first one I didn't even really see the other

two. One of the things they showed me

was object orienting programming

they showed me that but I didn't even

see that. The other one they showed

me was a networked computer

system… they had over a hundred Alto

computers all networked using email

etc., etc. I didn't even see that. I was so

blinded by the first thing they showed

me which was the graphical user interface…

within you know ten minutes it was obvious to me that all

computers would work like this some day.

Smalltalk Smalltalk

OK, really, what is OO?

Object-oriented programming is composed primarily

of four key language features:

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance

Purpose: polymorphism at scale Purpose: polymorphism at scale

OK, really, what is OO?

Object-oriented programming is composed primarily

of four key language features:

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance
In my mind, this is

OO’s killer feature.

Recap & Next Class

This lecture:

Next lecture:

Dan Ingalls’ talk on Smalltalk

How does OO work?

OOP

