
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 16: Scope

Outline

What is scope?

What are the kinds?

Why is it important?

How do they work?

Scope

Recall that a variable is a named placeholder for a value
in an expression. Scope is a set of rules that determines
what value is returned when a variable is used in an
expression.

Kinds

There are two main kinds of scope.

• Lexical scope
• Dynamic scope

Both definitions depend on a notion of time.

• Lexical scope depends on compile time.
• Dynamic scope depends on run time.

Importance

Scope rules are used to determine:

• Which values are returned.
• When garbage collection is run.

Scope rules can have an impact on whether programmers
write buggy programs. Here are some languages with
confusing scope rules:

• JavaScript
• R
• LISP (the original)

Dynamic scope

Dynamic scope is a rule that finds the most recent value
of a given variable in a program’s execution (i.e, at run
time).

Lexical scope

Lexical scope is a rule that uses the lexically closest
value of a variable at the time the use was defined (i.e., at
compile time).

Kinds

“Confusing” languages either have a flawed/complicated
version of lexical scope (e.g., R, JavaScript) or use dynamic
scope (the original LISP).

Example

x = 10;

def f()
{
 print x."\n";
}

def g()
{
 x = 20;

 return f();
}

g();

What gets printed out?

Perl Examples

local $x = 10;

sub f
{
 print $x."\n";
}

sub g
{
 local $x = 20;

 return f();
}

g();

Lexical scopeDynamic scope

my $x = 10;

sub f
{
 print $x."\n";
}

sub g
{
 my $x = 20;

 return f();
}

g();

(local keyword) (my keyword)

Perl Examples

(let’s try these)

How do they work?

(whiteboard)

Recap & Next Class

This lecture:

Next lecture:

Object-oriented programming

Scope

