
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 15: Interpretation

Outline

Feedback

Weekly TODOs

Interpreter Evaluation

Project meetings

Happy to talk to you— reach out! Feedback

0

1

2

3

4

5

6

F#

Lectu
res

Pars
ers

Visu
al S

tudio

Demo co
de

Fin
al p

rojec
t

Fu
nctio

nal p
rogra

mming
Hat

happy

0

1

2

3

4

5

6

7

Parsers Error
messages

F# Nothing Partner
coordination

Remote
learning

Time
management

sad

Reminder: Four TODOs each week

• Lab assignment
• Quiz
• Activity
• Feedback

5-10 hours
<20 minutes
<20 minutes
<5 minutes

What is a programming language?

What is a programming language?

MyPL

ç

What is a programming language?

SQL

ç
σEmpId>3000

What is a programming language?

SQL

çint main() {…}

What is a programming language?

SQL

ç(plus 1 2)

3

What is a programming language?

MyPL

ç

What is a programming language?

parser evaluatorAST

ç

Program Interpreter

Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly interprets code, often in the form of an abstract
syntax tree.

Example

+

^

3 2

1

3^2 + 1

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9 1

Example

+

^

3 2

1

3^2 + 1

Eager evaluation: usually a post-order traversal of an AST.

3 2

9 1

10

This traversal is conveniently written as a recursive function.

Code Example

pluslang

<expr> ::= (plus <expr> <expr>+)
 | n ∈ ℕ

(plus 1 2)

(plus 1 2 3 4 5)

(code)

Variables

Variables

A variable is a named placeholder for a value in an
expression. At runtime, when a value is assigned to a
variable, that variable name is bound to the value within
the variable’s scope. When a variable is used in an
expression, the bound value is substituted into the
expression when the expression is evaluated.

We’ll talk about scope in the next lecture.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq{ }

{ } is an “environment”

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

x 2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

3 2

9

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

9

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

3 2

9 1

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

9 1

10

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ } is an “environment”

x 2

2

3 2

9 1

10

10

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

Cool, huh?

x 2

2

3 2

9 1

10

10

Every CS major should know this.

Recap & Next Class

This lecture:

Next lecture:

Scope

Growing a Language

Program Interpretation

