
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 14-2: SQL

Outline

SQL History

Relational Algebra

SQL Language

SQL

• SQL, or “structured query language,” is a DSL for

querying data, invented by E. F. Codd in 1970.

• Limits itself to certain kinds of queries.

• All valid queries can be answered efficiently (and

they terminate).

• Based on a theory of data queries called the

relational algebra.

Importance of SQL

• IBM (Codd’s employer) never capitalized on its

invention.

• But Larry Ellison (Oracle) did, and as a result, became

one of the richest people on earth.

• E.F., Codd won a Turing Award for his work on the

relational algebra and relational database management

systems.

• As of 2017, relational database systems alone were a $50

billion market.

• RDBMSs are a major area of CS research.

• SQL is one of the most important and successful

languages ever invented.

Failures of SQL

• One of Codd’s goals was to enable non-programmers to

perform data querying tasks.

(“Seven Steps to Rendezvous with the Casual User.” E.F.

Codd. IBM Research Labratory report RJ 1333 (#20842).

1974.”)

• This goal was not achieved. Writing SQL is still

considered a specialized task suited for programmers.

The relational algebra is a calculus defined over set theory.

Relational Algebra

• Recall: sets contain only unique elements.

• Also, the order of elements in a set does not matter.

A relation is a set of tuples.

Relational Algebra: Data Relational Algebra: Data

• The members of a tuple are called attributes.

• The order of attributes in a tuple does not matter.

A relation is a set of tuples.

• An instance of a relation is a table.

A relation is a set of tuples.

Relational Algebra: Data

A database is a set of tables (relation instances).

Relational Algebra: Data

A schema describes a database independently of instances.

schema : instances :: class : object

Employee(Name, EmpId, DeptName)

Dept(DeptName, Manager)

Relational Algebra: Data

A relation is described by its attributes.

To be clear:

A database contains instances of relations described by a schema.

Employee(Name, EmpId, DeptName)

Dept(DeptName, Manager)

{database

{schema

Relational Algebra

{

relation

{

instance

{

instance

{

relation

The relational algebra also defines operations over relations.

Relational Algebra: Operations

Such operations yield new relations.

Employee(Name, EmpId, DeptName)

ΠName,EmpId

ΠName,EmpId(Employee)

Operations: Projection

Projection selects a subset of attributes a1,…,an in a tuple.

Πa1,…,an(R)

(a1,…,an)

Operations: Projection

Employee(Name, EmpId, DeptName)

ΠName,EmpId(Employee) → (Name, DeptName)

ΠName,EmpId() →

example

Projection selects a subset of attributes a1,…,an in a tuple.

Operations: Projection

Dept(DeptName, Manager)

ΠManager(Dept) → (Manager)

example

Projection selects a subset of attributes a1,…,an in a tuple.

ΠManager() →

Operations: Selection

Selection selects a subset of tuples matching a predicate φ.

σφ(R)

{t | t ∈ R, a θ v is true}

where φ has the form aθv:

• a is an attribute.

• θ is an operation like <,≤,>,≥,=,≠.

• v is a value.

Operations: Selection

Employee(Name, EmpId, DeptName)

σEmpId>3000(Employee) → (Name, EmpId, DeptName)

σEmpId>3000() →

example

Selection selects a subset of tuples matching a predicate φ.

Dept(DeptName, Manager)

σManager=Harriet(Dept) → (DeptName,Manager)

example

σManager=Harriet() →

Selection selects a subset of tuples matching a predicate φ.

Operations: Selection

Rename renames an attribute of a tuple according to a

substition rule a/b.

Operations: Rename

ρa/b(R)

{t | t[a/b] ∈ R}

where t[a/b] is the tuple with attribute a renamed to b.

Operations: Rename

Employee(Name, EmpId, DeptName)

ρEmpId/Foo(Employee) → (Name, Id, DeptName)

example

Rename renames an attribute of a tuple according to a

substition rule a/b.

ρEmpId/Foo() →

Foo

Dept(DeptName, Manager)

ρManager/Boss(Dept) → (DeptName,HeadHoncho)

example

Operations: Rename

Rename renames an attribute of a tuple according to a

substition rule a/b.

ρManager/Boss() →

Boss

Join returns a new relation from relations R1 and R2 based on join

predicate θ.

Operations: Join

R1 ⋈θ R2

σθ(R1×R2)

where θ is a predicate of the form aθv:

• a is an attribute.

• θ is an operation (most commonly =).

• v is a value.

and where × is the Cartesian product.

Employee(Name, EmpId, DeptName)

Join returns a new relation from relations R1 and R2 based on join

predicate θ.

Operations: Join

Dept(DeptName, Manager)

Employee⋈DeptName=DeptNameDept

→ (Name, EmpId, DeptName, Manager)

example ⋈θ

where θ is DeptName=DeptName

→

Relational Algebra: Closure

All operations in the relational algebra are closed, meaning that every

operation on a relation yields a relation.

As a programming language designer, closure is a convenient property.

E.g., once the relation primitive is defined in the language, no additional

primitives are needed in order to define the language’s operations.

Also, each operation’s semantics can be considered in isolation. This

contains the potential explosion in complexity, and it’s what makes

programming languages possible.

SQL

(example)

Optimizations

• Relational algebra abstracts queries from data representation.

• Modern SQL engines rewrite queries to make them faster.

• On-disk data layouts can be automatically optimized for specific queries.

• Efficient implementation is an active area of research.

Want to play with it?

You can download a copy for free at https://www.mysql.com/

Or on a Mac with Homebrew: “brew install mysql”

Recap & Next Class

This lecture:

Next lecture:

Evaluation rules

SQL History

Relational Algebra

SQL Language

