
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 13: Parsing

Outline

Parts of a language

Parser combinators

Hoare Property

“There are two ways of
constructing a software
design: One way is to make
it so simple that there are
obviously no deficiencies,
and the other way is to
make it so complicated that
there are no obvious
deficiencies.” — C.A.R. Hoare

How do programs run?

int main() {
 printf(“hello\n”);
 return 0;
}

λmain

@

printf λ “hello\n”

seq

ret

0

1. lexical analysis (“front-end”)

2. evaluation (“back-end”)

1. 2.

Front-end: the parser

A parser is a function that takes as input a string of
symbols conforming to the rules of a formal grammar. If
the string is not a valid sentence in the language, the
parser rejects the string. If the string is a valid sentence
in the language, the parser accepts the string and
outputs a data structure that represents the meaning of
the sentence.

For programming languages, meaning is generally
represented in the form of an abstract syntax tree (AST).
In an AST, conventionally, interior nodes are operations,
and leaves are data.

Front-end: the parser

The subject of today’s lesson.

Back-end: the evaluator

1. Interpreter

2. Compiler

There are two kinds of back-end:

eval

Interpretation

output

input

AST

Interpretation Downsides

•Usually (very) slow

(often 100-200x slower than compilation)

LET IT BE KNOWN
FOR ALL ETERNITY

THAT PHARAOH
TUTANKHAMUN

LOVES PIZZA

Interpretation Advantages

•An interpreter is “just a program” so debugging

a language is the same as debugging any other

program.

Some interpreted languages

•Most Lisps

•Python

•Ruby

•MATLAB

•R

• (sort of) Java and JavaScript

compile

Compilation

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

output (machine code)

AST

comp

Compilation

x86

input

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

AST

output

Some compiled languages

•C

•C++

•Go

•FORTRAN

•Java (sort of)

•C# (ditto)

•F# (ditto)

Compilation Advantages

•Usually (very) fast

(often 1.5-2X slower than hand-optimized

assembly code)

•Compiled program is in machine (binary)

format; difficult to debug a buggy language

because many steps separate source program

from final output.

16

• Intermediate Code:
temp1 = convert_int_to_double(60)
temp2 = mult(rate, temp1)
temp3 = add(initial, temp2)
position = temp3

•Optimized Code:
temp1 = mult(rate, 60.0)
position = add(initial, temp1)

•Generated Machine Code:
movf rate, fp2
mulf #60.0, fp2
movf initial, fp1
addf fp2, fp1
movf fp1, position

Code “Optimization”

Compilation Downsides

•Compilation can take a long time

•Cannot modify program without source code.

•Hard to evolve language; compilers are

complex.

Some hybrid (JIT) languages

•Java (C#, F#)

•JavaScript

eval

JIT-Compilation

x86

input
movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

AST

output

History

•Surprisingly, compilers were invented before

interpreters.

•More obvious to early engineers.

Compilers: History

• Invented by Grace
Hopper in 1952 while
working on the A-0
and FLOW-MATIC
languages.

•Work eventually
became the COBOL
programming
language, still widely
in use today.

I used to be a mathematics professor. At that time I found
there were a certain number of students who could not
learn mathematics. I then was charged with the job of
making it easy for businessmen to use our computers. I
found it was not a question of whether they could learn
mathematics or not, but whether they would. […] They said,
‘Throw those symbols out — I do not know what they mean,
I have not time to learn symbols.’ I suggest a reply to those
who would like data processing people to use
mathematical symbols that they make them first attempt to
teach those symbols to vice-presidents or a colonel or
admiral. I assure you that I tried it. — Grace Hopper

Compilers: History

Interpreters: History

• Invented by John
McCarthy in 1958
while working on
LISP.
• Invented as a

byproduct of
McCarthy’s thinking
about computation
from first principles.
•McCarthy wanted to

build computers that
could think!

•LISP was too resource
hungry for most uses at the
time.

Parsers

Parser Combinators

Parser Combinators

• A kind of recursive decent parser.

• A recursive descent parser is a parser built from
a set of mutually recursive procedures where
each such procedure usually implements one of
the productions of the grammar.

• Recursive descent parsers are “top-down,”
meaning that they recognize sentences by
expanding nonterminals, starting from the start
symbol.

• “Bottom-up” parsers start with terminal symbols
and work in the opposite direction, often utilizing
dynamic programming… these are more common
in practice!

Basic Primitives

• Input  

type Input = string * bool

• Output  

type Outcome<'a> =

| Success of result: 'a * remaining: Input

| Failure of fail_pos: int * rule: String

Basic Primitives

• A parser is 

type Parser<'a> = Input -> Outcome<‘a>

• Keep in mind: a parser is a function.

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

• Parsers that combine parsers. Correspond with

grammar non-terminals. Also called “combining

forms.”

• For flexibility, you can also have parsers that do both.

A very simple terminal parser

• To parse a given char  

pchar(c: char) : Parser<char>

• Notice that the generic type inside <brackets> is the return

type of the parser.

• So pchar returns a parser.

• When it is run with an input, it returns an Outcome<char>.

How to use it

• (pchar ‘z’) input

• input must be “prepared” first.

• > let input = "zoo";;

val input : string = "zoo"

> let i = prepare input;;

val i : Input = ("zoo", true)

> (pchar 'z') i;;

val it : Outcome<char> = Success ('z',("oo", true))

A very simple combining parser

• To parse two things in sequence:  

pseq : p1:Parser<‘a> -> p2:Parser<‘b> ->

f:('a * 'b -> 'c) -> Parser<‘c>

• It looks more complicated than it is.

• Let’s look at each part.

A very simple combining parser

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p1 is a parser.

A very simple combining parser

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p2 is a parser.

A very simple combining parser

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• f is a function that takes the result of p1 and p2 and does

something with it. That something is up to you.

How to use it

• pseq (pchar ‘z’) (pchar ‘o’) id

• id is F#’s identity function.

• Let’s play with this in fsharpi.

More details

• It is critical that you read the “Parser Combinators” reading.

• I suggest that you sit down, uninterrupted, for an hour

or two, and work through the examples in fsharpi.

• The reading builds the Parsers.fs library that you are

given for HW7.

Example: brace language

• An expression is a sequence of terms, consisting of at least

one term.

• A term is either 'aaa', 'bbb', or a brace expression.

• A brace expression is '{', followed by an expression,

followed by '}'.

Example: brace language

<expr> ::= <term>+
<term> ::= aaa
 | bbb
 | <brace>
<brace> ::= { <expr> }

Recap & Next Class

This lecture:

Next lecture:

SQL

Project ideas

Parts of a language

Parser combinators

