
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 12-2: ML and F#

Outline

• Algebraic data types (ADTs)

• ADTs and pattern matching: better together

• Using patterns to avoid errors

• Higher-order functions: map and fold

Algebraic Data Types*

*not to be confused with Abstract Data Types!

Algebraic Data Type

An algebraic data type is a composite data type, made
by combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a
type is the cartesian product of its component types.

• Invented by Rod Burstall at
University of Edinburgh in ‘70s.

• Part of the HOPE programming
language.

• Not useful without pattern
matching.

• Like peanut butter and chocolate,
they are “better together.”

Algebraic Data Types A “move” function in a game

north

south

eastwest

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

A “move” function in a game (Java)

public … move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

type Direction =
 North | South | East | West;

let move coords dir =
 match coords,dir with
 |(x,y),North -> (x,y - 1)
 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (Java)

Discriminated Union (sum type)

• Pattern match to extract parameters

type Shape =
 | Rectangle of float * float
 | Circle of float

let s = Rectangle(1.0,4.0)
match s with
| Rectangle(w,h) -> …
| Circle(r) -> …

Parameters

• Names are really only useful for initialization, though.

let s = Rectangle(height = 1.0, width = 4.0)

Named parameters

type Shape =
 | Rectangle of width: float * height: float
 | Circle of radius: float

type MyList<'a> =
 | Empty
 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =
| None
| Some of 'a

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (float quot/float div)

Avoiding errors with patterns

> divide 6 7;;

val it : float option = Some 0.8571428571

> divide 6 0;;

val it : float option = None

>

Avoiding errors with patterns

• Why option?

• option is a data type;

not handling errors is a static type error!

option type

Mapping and Folding

map

Intuition:

map

List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

map

[2;8;22;4]

|> List.map (fun x -> x + 1)

|> List.map float

|> List.map (fun x -> x / 3.3)

|> List.sort

[0.9090909091; 1.515151515; 2.727272727;

6.96969697]

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

fold

Intuition:

fold left

List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4]

acc = 0+1, [2;3;4]

acc = 1+2, [3;4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

fold right
List.foldBack

 (fun x acc -> acc+x) [1;2;3;4] 0
[1;2;3;4], acc = 0

[1;2;3], acc = 0+4

[1;2], acc = 4+3

[1] acc = 7+2

[], acc = 9+1

returns acc = 10

fold

• If you haven’t done the collaborative activity yet, STOP.

• Write a function number_in_month that takes a list of dates

(where a date is int*int*int) and an int month and

returns how many dates are in month

• Use fold

fold

let number_in_month(ds: Date list)(month: int) : int =
 ds
 |> List.fold (fun acc (_,mm,_) ->
 if month = mm then
 acc + 1
 else
 acc
) 0

Recap & Next Class

Today we covered:

Next class:
Parser combinators

ADTs

Pattern matching with ADTs

Avoiding errors with option types

Map and fold

